16d) No logicians are lazy

\[\forall x \in L, -\exists(x) \exists(x) = "x \text{ is lazy}" \]

\[L = \text{set of logicians} \]

f) -1 is not the square of any real number

\[\forall x \in \mathbb{R}, -1 \neq x^2 \]

26b) The product of any two odd integers is odd

\[\forall x \in \mathbb{Z}, \forall y \in \mathbb{Z}, (x \text{ is odd } \land y \text{ is odd}) \implies xy \text{ is odd} \]

\[\forall x \in \mathbb{Z} \]
27b) \(\exists x \text{ s.t. } (\text{Rect}(x) \land \neg \text{Square}(x)) \)

There exist rectangles but no squares. 😕

\(\exists x \text{ s.t. } \text{Rect}(x) \land \neg \exists x \text{ s.t. } \text{Square}(x) \)

There is a rectangle that is not a square ✓

Exam #1 Fri Oct 7th

Chs 1, 2 ✓ mostly
\(\S 3.1 - 3.3 \)

\(\forall x, P(x) \rightarrow Q(x) \)

\(\forall x, P(x) \)
Thm: The sum of two even integers is even.

\[\forall x, y \in \mathbb{Z}, \ (x \text{ is even } \land y \text{ is even}) \Rightarrow (x + y) \text{ is even} \]

To prove: start w/ generic \(x, y \in \mathbb{Z} \) show that

\[(x \text{ is even } \land y \text{ is even}) \Rightarrow x + y \text{ is even} \]

Def: For integers \(x \), "\(x \) is even" means

\[
\frac{x}{2} \text{ has no remainder}
\]

\[
\frac{x}{2} \in \mathbb{Z}
\]

\[
\exists k \in \mathbb{Z} \text{ s.t. } k = \frac{x}{2}
\]

\[
\exists k \in \mathbb{Z} \text{ s.t. } x = 2k
\]
Thm: \(\forall x, y \in \mathbb{Z}, \ (x \text{ is even } \land y \text{ is even}) \rightarrow x + y \text{ is even} \)

Proof:

Assume \(x, y \in \mathbb{Z} \) [want to prove \((x \text{ is even } \land y \text{ is even}) \rightarrow (x + y \text{ even}) \)]

Assume \(x \text{ is even } \land y \text{ is even} \)

\[\exists k \in \mathbb{Z} \text{ s.t. } x = 2k \quad \text{(def of even)} \]

\[\exists l \in \mathbb{Z} \text{ s.t. } y = 2l \quad \text{(def of even)} \]

Let \(k, l \) be as above \(\text{(Axiom of choice)} \)

Then \(x + y = 2k + 2l = 2(k + l) \quad \text{(substitution)} \)

where \(k + l \in \mathbb{Z} \quad \text{(algebra)} \)

\[\exists m \in \mathbb{Z} \text{ s.t. } x + y = 2m \quad \text{(by closure of \(\mathbb{Z} \) under +)} \]

(namely \(m = k + l \))

\[\therefore x + y \text{ is even} \]
\(\forall x, y \in \mathbb{Z}, (x \text{ even } \land y \text{ even }) \rightarrow x + y \text{ is even} \)

Thm: The product of two even integers is even.

\(\forall x, y \in \mathbb{Z}, x \text{ even } \land y \text{ even } \rightarrow xy \text{ even} \)

Proof: Assume \(x, y \in \mathbb{Z} \) and both are even.

[want \(xy \) is even]

Then \(\exists k \in \mathbb{Z} \text{ s.t. } x = 2k \) and \(\exists l \in \mathbb{Z} \text{ s.t. } y = 2l \) \(\text{(def of even)} \)

Let \(k, l \) be as above \(\text{(Ar of choice)} \)

Then \(xy = 2k \cdot 2l = 2 \cdot (2kl) \) \(\text{(sub, c.l.g., closure of } \mathbb{Z} \text{ under \times)} \)

\(\exists m \in \mathbb{Z} \text{ s.t. } xy = 2m \) \(\text{(namely } m = 2kl) \)

\(\therefore xy \text{ is even } \) \(\text{(def of even)} \)
\[\forall x, y \in \mathbb{Z}, (x \text{ even } \land y \text{ even }) \rightarrow xy \text{ is even} \]

Def: \(X \) is odd iff \(\exists k \in \mathbb{Z} \text{ s.t. } x = 2k + 1 \)

\(x \) is prime iff only divisors are 1 \& itself

if something divides \(x \), then something is 1 \& \(x \)

\(x \) is composite iff \(x \) has non-trivial factors

\(\exists y, z \in \mathbb{Z}^+ \text{ s.t. } yz = x \land y \neq 1 \land z \neq 1 \)

\(x \) is prime \(\sim (\exists y, z \text{ s.t. } yz = x \land y \neq 1 \land z \neq 1) \)

\(\forall y, z, \sim (\gamma z = x \land y \neq 1 \land z \neq 1) \)
For all integers $n \geq 1$, $n^2 + 3n + 2$ is not prime.

Proof: Let $n \in \mathbb{Z}^+$. [Need $n^2 + 3n + 2$ is not prime]