<table>
<thead>
<tr>
<th>P</th>
<th>q</th>
<th>~P</th>
<th>~q</th>
<th>p~q</th>
<th>pq</th>
<th>(p∧¬q)∨(¬p∧q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Statement forms are logically equivalent if they have the same truth table.

\[(p∧¬q)∧(¬p∧q) \equiv (p∧q)∨(¬p∧q) \equiv p⊕q\]

Statements are logically equivalent if their statement forms are logically equivalent.
\(p \)
\(x \) is negative or \(y \) is negative but not both are negative
\((p \lor q) \land \neg (p \land q) \)

\(x < 0 \)
\(\neg (x < 0) \Rightarrow x \geq 0 \)

either \(x \) is negative and \(y \) is not negative, or \(x \) is not negative and \(y \) is negative
\(\neg (p \land q) \)

Josh is short and poor.
\(p \) = Josh is short
\(q \) = Josh is poor

\(\neg p \land \neg q \)
De Morgan’s Laws \[\neg(p \lor q) \equiv \neg p \land \neg q \]
\[\neg(p \land q) \equiv \neg p \lor \neg q \]

John is tall or John is noisy.
\[p \lor q \]

negation:
John is not tall and John is not noisy.
\[\neg p \land \neg q \]

commutative:
\[p \land q \equiv q \land p \]
\[p \lor q \equiv q \lor p \]

5 + 6 = 6 + 5

5 + 7 = 7 + 5

\[(p \land q) \lor r \equiv p \land (q \lor r) \equiv p \land q \land r \]
\[(p \lor q) \land r \equiv p \lor (q \land r) \equiv p \lor q \lor r \]

\[p \lor (q \land r) \equiv (p \lor q) \land (p \lor r) \]

\[p \land (q \lor r) \equiv (p \land q) \lor (p \land r) \]

\[a \lor (b + c) = a + b + c \]
\[a + (b + c) \neq (a + b) + c \]
Identity: \(p \land t = p \) \\
\(p \lor c = p \) \hspace{2cm} \text{always true: tautology} \\
\(p \lor \neg p = t \) \hspace{2cm} \text{always false: contradiction} \\
\neg \text{negation: } \neg(p \land \neg p) = c \\\n\neg(p \lor \neg p) = t \\
\text{double neg: } \neg \neg p = p \\
\text{Idempotent: } p \lor p = p \land p = p \\
\text{universal bound: } p \lor t = t \land p \lor c = c \\
\neg (\neg p \land q) \land (p \lor q) \\
\text{DeMorgan } \equiv (\neg(p \lor q)) \land (p \lor q) \\
\text{double neg } \equiv (p \lor \neg q) \land (p \lor q) \\
\text{It is not the case that it is both not hot and raining, and it is hot or raining.} \\
\text{distributive (backwards) } \equiv p \lor (\neg q \land q) \\
\text{negation } \equiv p \lor c \\
\equiv p \\
\text{p = it is hot} \\
\neg q = \text{it is raining}
If you all ace the quiz next week then I'll buy you donuts.

<table>
<thead>
<tr>
<th>(P)</th>
<th>(\neg P)</th>
<th>(P \rightarrow \neg P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
<tr>
<td>(T)</td>
<td>(F)</td>
<td>(F)</td>
</tr>
<tr>
<td>(F)</td>
<td>(T)</td>
<td>(T \ { \text{vacuously true} })</td>
</tr>
<tr>
<td>(F)</td>
<td>(F)</td>
<td>(T)</td>
</tr>
</tbody>
</table>