2) \[p \lor v \lor w \]

3) \[B \Rightarrow u \in w \Rightarrow s \]

4) \[u \]

5) \[w \lor v \Rightarrow p \]

6) \[t \lor v \Rightarrow p \Rightarrow \exists u \Rightarrow \exists w \]

7) \[u \Rightarrow v \]

8) \[p \lor v \]

9) \[\neg s \]

10) \[\neg t \]

11) \[p \lor v \lor s \]

12) \[p \lor q \]

13) \[p \lor (\exists, \text{logical axiom}) \]

14) \[r \]

15) \[w \]

\[3 + 9 \]

\[3 \times 9 \]

\[1 + 10 \]

\[9,11 \]

\[(2, \text{logical axiom}) \]

\[(12,13,2) \]

\[(14,5) \]

4d) It is someone's birthday every day.

\[\exists y \forall x \ B(x,y) \quad \forall \]

\[\exists y \ B(x,y) \quad \exists y \ B(x,y) \quad T \]

\[B(x,y) = "x \ is \ y's \ birthday" \]
negation:

\neg \forall x \exists y \ B(x, y)

\exists y \forall x \neg B(x, y)

For some day x, all people do not have x as their birthday.

For some day x, it is no one's birthday on x.

Some day is no one's birthday.

6c) All languages with a game written in them that is available for Nintendo DS have a game written in them that is available for Vectors.

\forall L, \exists G \in G s.t. L(g, L) \land A(g, DS) \rightarrow \exists G \in G s.t. L(g, L) \land A(g, Vectors)

L has a game written in it available for DS

L has a game written in it available for Vectors
∀L ∈ L, ∃g ∈ G s.t. \(L(g, R) \land A(g, DS) \rightarrow A(g, Vector) \)

For all languages there exists a game g s.t. if g is worth in L and available for DS then that same game is also available for Vector.
Def: \(n \in \mathbb{Z} \) is prime means \(n > 1 \) and whenever two positive ints have product \(n \), then one of them is \(1 \).

\[n > 1 \land \forall r, s \in \mathbb{Z}^+, rs = n \implies r = 1 \lor s = 1 \]

\(\forall n \in \mathbb{Z} \) is composite means \(n > 1 \land \neg \exists r, s \in \mathbb{Z}^+ \text{ s.t. } rs = n \implies r = 1 \lor s = 1 \)

\[n > 1 \land \exists r, s \in \mathbb{Z}^+ \text{ s.t. } rs = n \uparrow \neg(r = 1 \lor s = 1) \]

\[n > 1 \land \exists r, s \in \mathbb{Z}^+ \text{ s.t. } rs = n \land r \neq 1 \land s \neq 1 \]

\(n > 1 \) and there are two factors of \(n \)
such that neither is equal to \(1 \).

Is \(6 \) composite? \(\yes \) \(\land \) \(6 = 2 \cdot 3 \)

Is \(3 \) prime? \(\yes \)

\[\begin{align*}
2 & : 1 & \cdot 2 & : \checkmark \\
3 & : 1 & \cdot 3 & : \checkmark \\
6 & : 1 & \cdot 6 & : \checkmark \\
\end{align*} \]

\[\begin{align*}
a, b, c, d & \text{ positive} \\
a > 1 \\
c > d \\
ac > bd
\]
Is 1 prime? \(N \) (1 \# 1)
Is 1 composite? \(N \) (1 \# 1)

<table>
<thead>
<tr>
<th>(n)</th>
<th>(n^2 + 5n + 6)</th>
<th>(\sqrt{n})</th>
<th>(\sqrt[3]{n})</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>72</td>
<td>2.45</td>
<td>5.6</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>1.75</td>
<td>3.7</td>
</tr>
<tr>
<td>7</td>
<td>90</td>
<td>2.65</td>
<td>4.10</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>1</td>
<td>3.4</td>
</tr>
<tr>
<td>0</td>
<td>6</td>
<td>1.75</td>
<td>1.8</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>4.5</td>
<td></td>
</tr>
</tbody>
</table>

Thus \(\forall n \in \mathbb{Z}^+ \), \(n^2 + 5n + 6 \) is composite.

Proof: Assume \(n \in \mathbb{Z}^+ \).

Thus \(n^2 + 5n + 6 > 1 \) (Appendix A, \(n \geq 1 \))

Let \(r = \frac{n^2}{2} \), \(s = \frac{n}{3} \)

Then \(r \cdot s = n \) and \(r \neq 0 \wedge s \neq 1 \) (algebra, Appendix A)

\(\therefore r, s \in \mathbb{Z}^+ \) s.t. \(rs = n \wedge r \neq 1 \wedge s \\
\therefore n^2 + 5n + 6 \) is composite (def composite)