\[a, d \text{ compute } g, r \text{ s.t. } a = gd + r \text{ and } 0 \leq r < d \]

\[\text{precondition: } a \geq 0, \ d > 0 \]

\[\text{postcondition} \]

\[g = 0 \]

\[k \rightarrow g \text{ while } (r \geq d) \]

\[r = r - d \]

\[g = g + 1 \]

invARIANT: always true at some point in code (usually after 11th iteration of loop)

\[I(n) = \text{"if } n \text{ is } r \geq 0 \text{ and } r = a \mod d \text{"} \]

Complete statements of the loop

\[g = r \geq d \]

"guard"

something that

must be \(true \) for

loop to execute
1) \(I(0) \) is true when loop starts (at \(\theta \))

2) \(\forall k \in \mathbb{N} \rightarrow I(k) \rightarrow I(k+1) \) (loop preserves invariant)

3) \(G \) eventually becomes \(F \) (loop terminates)

4) \(I(N) \land G \rightarrow \text{postconditions} \) (code does what it says it will do)

Basis: \(I(0) \) is \(g = 0 \land r \geq 0 \land r = a \), which is true

- \(g = 0 \) by prev. assign.
- \(r = a \) by prev. assign.
- \(r \geq 0 \) true \(r = a \geq 0 \) by precondition

Inductive step: Suppose \(k \geq 0 \) and \(I(k) \) and \(G \) are true

\(g_{\text{old}} = \text{value after } k \text{th iteration of loop} \) \(g_{\text{old}} = k \land g_{\text{new}} \geq 0 \land r_{\text{old}} = a - k \cdot d \)

\(r_{\text{new}} = \text{value after } (k+1) \text{ iteration} \)

\[[\text{want } g_{\text{new}} = k + 1 \land g_{\text{new}} \geq 0 \land r_{\text{new}} = a - (k+1) \cdot d] \]

By assignment in loop \(r_{\text{new}} = r_{\text{old}} - d \)
by assignment \(z \) in loop \(g_{new} = g_{old}+1 \)

by substitution, \(g_{new} = a - kd - d = a - (k+1)d \)
\[g_{new} = k+1 \]
\[g_{new} = \textcircled{1} - d \geq d - d = 0 \]

Eventual Falsity of Guard: \(g_{new} < g_{old} \), so \(r \) gets smaller and smaller, eventually must be \(< d \) (well ordering—
there must be a smallest value of \(r \))

by \(r \) is always \(\geq 0 \); if smallest value is \(\geq d \) then loop iterates again, making
an even smaller value \(\Rightarrow \Rightarrow \)

Postconditions: Suppose \(N \) is s.t. \(I(N) \) and \[\text{want } a = \text{den}\r
D < cd \]
\[I(N) = \text{"} r = a - Nd \wedge r < d \wedge b = N \text{"} \]

Then \(a = Nd + r = g_{old} + r \)
\[G = r \geq a \]
\[\sim G = r < a \]

Sets (Ch. 5)

\[A = \{ x \in D \mid P(x) \} \] means \(x \in A \iff x \in D \land P(x) \)
\[A = \{ x \in \mathbb{Z}^+ \mid x < 4 \} = \{ 1, 2, 3 \} \]
\[B = \{ x \in \mathbb{Z} \mid x^2 < 10 \} = \{ -3, -2, -1, 0, 1, 2, 3 \} \]

\(A \subseteq B \) means \(\forall x, x \in A \rightarrow x \in B \)

"A is a subset of B"

proper subset = subset but not equal

\(A = B \) means \(\forall x, x \in A \iff x \in B \)

\[\forall x, x \in A \rightarrow x \in B \land x \in B \rightarrow x \in A \]
\[A \subseteq B \land B \subseteq A \]

\[A \subseteq B \land B \subseteq A \]
\[A \cup B = \{ x \mid x \in A \lor x \in B \} \]

"union of A, B"

\[A \cap B = \{ x \mid x \in A \land x \in B \} \]

"intersection of A, B"

\[B - A = \{ x \mid x \in B \land x \notin A \} \]

"set difference"

\[A^c = \{ x \in U \mid x \notin A \} \]

universe

\[\emptyset = \{ \} = \{ x \mid x \notin x \} \]

x \in \emptyset is always false

"empty set"