Prim: grow a connected set A into a MST
- want to easily find light edge across cut $(v \in A, \text{else})$
- maintain, for each v, distance to vertex in A
 total weight 17
d(v): weight of min edge from v to v in G

Pseudocode to find min d(v)

Init
Pick starting vertex s
\[d[v] = \infty \text{ for each } v \in V \]
\[d[s] = 0 \]
\[\pi[v] = NIL \text{ for each } v \in V \]

Put all \(v \in V \) in P.Q. using key \(d[v] \) (the edge \((v, \pi[v])\) has weight \(x \))

While (Q \(\neq \emptyset \))

\[v = Q\text{.extract-min()} \]

Add \((v, \pi[v])\) to A

For each \(u \in \text{Adj}[v] \)

\[d[u] > w(v, u) \text{ and } u \in Q \]
\[d[u] = w[v, u] \]
\[\pi[u] = v \]
\[Q\text{.decrease-key}(u, d[u]) \]
<table>
<thead>
<tr>
<th>Operation</th>
<th># times</th>
<th>Binary heap</th>
<th>Unsorted array</th>
<th>Fib-heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>build-queue</td>
<td>1</td>
<td>$O(V)$</td>
<td>$O(V)$</td>
<td>$O(V)$</td>
</tr>
<tr>
<td>extract-min</td>
<td>V</td>
<td>$O(\log V)$</td>
<td>$O(V)$</td>
<td>$O(\log V)$</td>
</tr>
<tr>
<td>decrease-key</td>
<td>E</td>
<td>$O(\log V)$</td>
<td>$O(1)$</td>
<td>$O(1)\text{smooth}$</td>
</tr>
<tr>
<td>total</td>
<td></td>
<td>$O(E \log V)$</td>
<td>$O(V^2)$</td>
<td>$O(E + V \log V)$</td>
</tr>
</tbody>
</table>

Better for sparse graphs, better for dense graphs.

Shortest paths:
1) given u,v what's the shortest path
2) given v, shortest path to all else
3) for all pairs, what's shortest path
4) All pairs shortest paths