Any alg for TSP would reject (6, 4)
would accept (6, 20)
Poly-time non-deterministic decision procedure for $TSP(G,k)$

1) randomly permute vertices to make a tour
2) compute cost of tour
3) output YES iff cost $\leq k$

A non-deterministic decision procedure is said to accept an input if some choices lead to YES, if answer should be NO.

repeat = no choices lead to YES.

Problem is in NP if there is a non-deterministic poly-time algorithm that solves it. $TSP \in NP$
Composite: given \(n \), determine if \(n \) is composite

1) guess two factors \(a, b \) in \((2, \sqrt{n}) \) certificate
2) compute product \(a \cdot b \)
3) output \(1 \) iff \(a \cdot b = n \)

\(\text{Composite} \in \text{NP} \)

Clique: given \(G, k \) determine if \(G \) has a \(k \)-clique

\(G \)

\(k \) vertices all connected to each other

has a \((\text{some}) \) \(3 \)-clique but no \(4 \)-clique
CLIQUE \in NP

1) randomly choose k verts \rightarrow certificate
2) check if they form a k-clique
3) output 1 if they do

NP can also be defined as poly-time verifiable

for any input that should be accepted, there is evidence the input should be accepted (poly-length) certificate and can be verified in poly-time

$P \leq NP$ for $P=NP$, need $NP \leq P$

no one has proved that $NP \subseteq P$ or that $NP \not\in P$
Problem B is NP-complete if it is as hard as any other NP problem and is in NP.

⇒ any other problem in NP can be reduced to it

\[A \leq_p B \text{ if we can write alg for } A; \]

\[\text{poly-time} \rightarrow 1) \text{ take input, convert input to format for } B \\
2) \text{ run alg for } B \text{ on result of 1) } \\
3) \text{ output result of 2) } \]

if B is easy then A is easy

if A is hard then B is hard
HAM-CYCLE: given G, does it have a cycle visiting each vertex exactly once (Hamiltonian cycle)

HAM-PATH: given G, does it have a path visiting each vertex exactly once

HAM-CYCLE is NP-complete

To show that HAM-PATH is NP-complete: show $H-C \leq_p H-P$

(since \leq_p is transitive and $A \leq_p H-C$ for all $A \in NP$

then $A \leq_p H-P$ for all $A \in NP$

We want to construct G' from G s.t. G' has $H-P$

Alg for $H-C$

1) Construct G'
2) Run $H-P$ on G'
3) Output result of 2
1) add vertex s, edge (s, u)
 (choose u arbitrarily)

2) add vertex t, edge (t, x)
 for all x adj to u

 now messed up \Rightarrow

To make G', pick any $u \in G$

add new vertex u' s.t., $u \in G \Rightarrow (u', v) \in G'$

add (s, u) (u', t)
G has $H-C \iff G'$ has $H-P$

\Rightarrow: Suppose G has $H-C$. Call it $u, v_1, v_2, v_3, \ldots, v_k, u.$

G' has $H-P$: $s, u, v, \ldots, v_k, u', \ell.$

\Leftarrow: Suppose G' has $H-P$. It must start/end at s, ℓ.

$H-P$ is $s, u, v_1, \ldots, v_k, u', \ell$

So G has $H-C: u, v_0, \ldots, v_k, u$.

3-CNF-SAT: Given ϕ in 3-CNF form, determine if satisfiable

$$\varphi \iff (\bar{x} \lor y \lor z) \land (x \lor \bar{y} \lor \bar{w})$$

3-CNF-SAT \in NP (evidence is the assignment - plug in values to evaluate ϕ in poly time)

3-CNF-SAT is NP-complete (reduce from SAT)
Given G, k, does G have k vertices connected to each other

CLIQUE is NP-complete
1) CLIQUE \in NP (above)

2) 3-CNF-SAT \leq_p CLIQUE

- Need Alg for 3-CNF-SAT(φ)

 1) Construct G, pick k from φ

 2) run CLIQUE on input (G, k)

 3) output result of 2)

φ is satisfiable

$(\overline{x}y \lor \overline{z}) \land (x \lor y \lor \overline{w}) \land (w \lor x \lor \overline{z})$
3 verts for each clause representing literals in clause
Edges between verts in diff clauses if not contradictory
\(k = \# \text{ of clauses} \)
Suppose \(\Phi \) is satisfiable. Then 2 one literal in each clause of \(\Phi \).

Pick one \(T \) literal per clause — that's a 3-clique.

Suppose \(G \) has a 3-clique. Must be 1 vert from each group of 3. These are the satisfying assignment.