Circuit-Equiv: \(\{(a, b) \mid a \text{ encodes a circuit equiv to the circuit } b \text{ encodes } \} \)

countable infinite representations of languages

but

uncountable \# of languages - suppose we list languages as \(\{0, 1\} \)

\[L_1: \begin{array}{ccccccccc} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array} \]
\[L_2: \begin{array}{cccc} 1 & 1 & 1 & 1 \end{array} \]
\[L_3: \begin{array}{ccccccccc} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array} \]

which languages can we represent?
Using \cup, \cdot, *, ω, ... what languages can we represent?

Can we represent \(\{ w \in \{0, 1\}^* \mid w \text{ has exactly two } 1\text{'s} \} \)

\(\{03^* \cdot 1 \cdot 03^* \cdot 1 \cdot 03^* \} \)

\(\{ w \mid w \text{ has at most one } 1 \} \)

\(\{03^* \cup 003^* \mid 03^* \} \)

\(\{ w \mid w \text{ begins and ends with } 1 \} \)

\(\{1 \}^* \cdot 0 \cdot 1^* \cdot 0 \cdot 1^* \cdot \{1 \} \)

\(\{ w \mid \text{ same # of } 0\text{'s as } 1\text{'s} \} \)

Can't do this one!
Regular expressions: simpler representation of

Formally, for alphabet \(\Sigma \),

- \(\emptyset \) is a regular expression
- \(a \) is a regular expression for all \(a \in \Sigma \)
- if \(\alpha, \beta \) are regular expressions, so are

\[
\alpha \beta, \\
\alpha \cup \beta, \\
\alpha^*
\]

Regular expressions are representations of the language they generate

- \(\emptyset \) represents \(\emptyset \)
- \(\{a\} \) represents \(\{a\} \)
- \(\{ab\} \) represents \(\{ab\} \)
- \(\{a\} \cup \{b\} \) represents \(\{a\} \cup \{b\} \)
- \(\{ab\} \) represents \(\{ab\} \)
- \(\{a\}^* \) represents \(\{a\}^* \)
- \(\{a\} \) represents \(\{a\} \)
- \(\{ab\} \) represents \(\{ab\} \)
\(a(a^*b^*)a \) represents ??

\[\{a\} \cup \{a^*b^*\} \cup \{a\} = \{a\} \cup \{a^*b^*\} \cup \{a\} \]

\[\uparrow \]

\[L(ab) \cup L(b) \]

\[\{ \text{words, or more } a\text{'s} \} \quad \text{followed by any # of } b\text{'s} \]

\[\{a\}^* \cup \{b\}^* \]

\[\{a^*b^* \cup \{a\} \}^* \]

\[L((a \cup ab)^*) \]

\[= L((a \cup ab)^*) \]

\[= L((a \cup ab)^*) \]

\[= (L(a) \cup L(ab))^* \]

\[= (\{a\} \cup \{a,b\})^* \]

\[= \{a,ab\}^* \quad \text{if every } b \text{ is preceded by an } a \]

Regular expression for \(\{w \in \{a, b\}^* \mid w \text{ has even # of } a\text{'s} \} \)
\\[\{ w \mid w \text{ has exactly 2 a's} \} \]

\[(b^*ab^*a^*)^* a^*b^*b^*a^* \]

Regular language: language represented by some regular expression

What languages aren't regular?

Deterministic Finite Automaton (DFA)

- A machine that, given a string, outputs \(Y \) or \(N \)
- Input tape
- Start state
- Read head
- Finite state control

Starts at beginning of input

On each step, change state based on:
- Current symbol
- Current state

At end of input, \(Y \) or \(N \) depending on state
Formally, a DFA is $\langle K, \Sigma, \delta, s, F \rangle$ where:

- K is a subset of K of accepting states
- Σ is the alphabet
- s is the start state
- F is the set of states
- $\delta: (K \times \Sigma) \rightarrow K$ is the transition function

Given:

$K = \{ s_0, s_1 \}$
$\Sigma = \{ a, b \}$

Transition table:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_0</td>
<td>s_0</td>
<td>s_1</td>
</tr>
<tr>
<td>s_1</td>
<td>s_1</td>
<td>s_0</td>
</tr>
</tbody>
</table>

New K: $s = s_0$, $F = \{ s_0 \}$

The DFA accepts $aabaabaa$, rejects aba, and accepts $\{ w | w \text{ has even length} \}$.