Every language generated by a regular expression is accepted by some NFA and vice versa.

Given reg exp, construct corresponding NFA:

1) NFA for \emptyset:

$\emptyset^* = \{e\}$

- e : \emptyset
- a : $\emptyset \xrightarrow{a} \emptyset$

2) NFA for $(a \cup b)$:

- M_1 to M_2 with e transitions between them.
Formally, find $M_1 = (K_1, \Sigma, \Delta_1, s_1, F_1)$ that accepts $L(\alpha)$

$M_2 = (K_2, \Sigma, \Delta_2, s_2, F_2)$ that accepts $L(\beta)$

Assume w.l.o.g. $K_1 \cap K_2 = \emptyset$

Then $M = (K_1 \cup K_2 \cup \{g_0\}, \Sigma, \Delta \cup \Delta_2 \cup \{(g_0, e, s_1), (g_0, e, s_2)\}, g_0, F_1 \cup F_2)$

accepts $L(\alpha \cup \beta)$

If $(\alpha \cup \beta)$ generates w then either α generates or β does.

If α then M_1 accepts w by some path

$$(s_1, w) \xrightarrow{(g_1, w_1, \ldots, w_k)} \ldots \xrightarrow{(f, e)}$$

and so M accepts w by path

$$(g_0, w) \xrightarrow{(g, w_1, \ldots, w_k)} \ldots \xrightarrow{(f, e)}$$

If β generated w then --- ...
If M accepts w then (work backwards from)

3) NFA for $a \cdot B$

add e-transitions from M1's accepts to M2's start
make M1's accepting states non-accepting
4) NFA for L^*

BAD!

a^*b

$(a+b)^* \neq (a^*b)^*$
Given NFA M, construct regular expression that generates
Number states $1, \ldots, n$

$L(M) = \sum_{i, j, k} R(i, j, k)$

Regular expression for set of strings
that drives M from q_i to q_j w/o
in the middle
using states q_{k+1} or above

if $s = q_i$ and final state is q_n
Then $R(1, n, 0)$ is regular exp for entire machine

$R(i, j, 0) =$

- $R(1, 2, 0) = a$
- $R(2, 3, 0) = a$
- $R(1, 3, 0) = \emptyset$