2.4.3 (b) \(L = \{ w \mid w \text{ is decimal rep of a mult of } 7 \} \)

L is not regular.

"Proof": Let \(n \) be as required by PT.

[Goal: find \(w \) s.t. \(|w| \geq n \), \(w \in L \) but \(w \) can't be pumped no matter how you split it up]

Let \(w = 1.4.0^n \) so \(|w| = n+2 \geq n \) and \(w \in L \).

Problem: \(w \) can be pumped:

Let \(x = 1.4, y = 0 \) then \(|xy| \leq n \)

\(|y| > 0 \)

and \(xy^iz \in L \) for all \(i \geq 0 \)

Maybe we picked the wrong string.
Maybe L is regular

Sum is 1 mod 3

115

47

0, 3, 6, 9

115 = 1 (mod 3)

36129

Adding trailing 4

13

1) multiply by 10
2) add 4

111 (mod 3)

0, 3, 6, 9

Sum is 2 mod 3

0, 3, 6, 9

Number read so far is 1 mod of 3

or

115 = 1 (mod 3)

115 - 4 = 2 (mod 3)

Number read so far is 2 more than multiple of 3

or

Sum is 2 mod 3

1, 4, 7

2, 5, 8

0, 3, 6, 9

Number read so far is a multiple of 3
add x as last digit

1) mult by 10
2) add x
\[L = \{ w w^R \mid w \in \{ a, b \}^* \} \]

\[L \text{ is not regular} \]

By PT: Let \(n \) be as specified by PT.

[need to find \(w \in L, \| w \| \geq n \) that can't be pumped]

\[a^n \text{ won't work} \]

Suppose \(w = x y z \) where \(|x y| \leq n \) and \(|y| > 0 \)

Then \(x = a^p, y = a^q, z = a^r \) where \(q < 0 \)

\[x z = a^{n-q} b^n b^n a^n \notin L \]
Or use closure properties of regular languages:

- If \(L_1, L_2 \) regular so are
- \(L_1 \circ L_2 \)
- \(L_1 \cup L_2 \)
- \(L \cup L \)
- \(\Sigma^* - L \)
- \(L^* \)

Suppose \(L \) is regular. Then so is (by closure under \(\cap \))

\[L \cap \{a^n b^n a^n \} \]

But \(L \cap \{a^n b^n a^n \} = \{a^n b^n a^n \} \)

where \(\{a^n b^n a^n \} \) is not regular

\[\therefore L \text{ is not regular.} \]
Let $L = \{w \mid w \text{ has equal } # \text{ of } a's \text{ and } b's \}$

Suppose L is regular.

Then so is $L \cap a^* b^* = a^n b^n$.

which is not regular \Rightarrow

$\therefore L$ is not regular

Let $L = \{w \mid w \text{ has 1 more } a \text{ than } b \}$

Suppose L is regular.

Then $L \cap a^* b^* = a^{n+1} b^n$ is also regular.

(now use PT to show $a^{n+1} b^n$ not regular to get our \Rightarrow)

\[\text{known non-regular subset of } L\]
\[L = \{ w | w \text{ has even } b' s \text{ and more } b' s \text{ than } a' s \} \]

\[L \cap a^n b^k = \begin{cases} a^n b^n b^{2k} \mid n \text{ is even, } k \geq 0 \cup \{ a^n b^n b^{k+1} \mid n \text{ is odd, } k \geq 0 \} \end{cases} \]

\[L' \]

\[L' \text{ is not regular: find } n \text{ from PT} \]

(Could just use this w let \(w = a^n b^{2n+2} \) (so \(k \geq n \) and we \(L' \))

(L is not regular)

Write \(w = xyz \) when \(|y| \leq n \) and \(|y| > 0 \).

Then \(x = a^g \) \(y = a^h \) where \(g > 0 \).

Then \(|x| |y| |z| = a^n b^{2n+2} \)

\[z = a^n b^{2n} b^2 \]

where \(n + |x| |y| |z| = n + |x| |y| |z| = n + \frac{2}{b} \geq 2n + 2 \)

so \(v \notin L' \Rightarrow \neg \]