\[w \in \mathcal{W} \quad a^m b^n \quad S \rightarrow \varepsilon b \]

3.136) \[w \in \mathcal{W} \quad a^m b^n \quad S \rightarrow \varepsilon \]

\[S \rightarrow aSb \quad S \rightarrow \varepsilon \]
unclear
Pushdown automata: NFA with a stack

- Each transition may push something on the stack
- Consult stack to determine destination

For a^nb^n: read a / push a on stack
- Read b / pop a off stack

(retain states that keep track of which part - a's or b's - we're reading)

At least one way that PDA accepts w:
1) w drives M to accepting state
2) With stack empty
Formally, PDA $M = (K, \Sigma, \Gamma, \Delta, s, F)$

- **States** K
- **Input Symbols** Σ
- **Stack Symbols** Γ
- **Start State** s
- **Final States** F

Δ is a relation on $K \times (\Sigma \cup \{\epsilon\}) \times \Gamma \times (K \times \Gamma^*)$

- Current state K
- Input symbol $(\Sigma \cup \{\epsilon\})$
- Stack symbol Γ
- Next state K
- New content on stack $(\Gamma \times \Gamma^*)$

PDA for $a^n b^n$:

- Δ: $(q_0, a, e), (q_0, a)$, $(q_0, b, a), (q_1, e)$, $(q_1, b, a), (q_1, e)$

- $s = q_0$
- $F = \{q_0, q_1\}$
\(\text{aabb} \quad (q_0, aabb, c) \rightarrow (q_0, bb, a) \rightarrow (q_0, bb, aa) \rightarrow (q_1, c, a) \rightarrow (q_1, e, c) \quad q_1 \in F, \text{ stack is empty} \\
\quad \quad \text{so accept} \)

\(\text{a}^n\text{b}^n \quad - \text{when read } a, \text{ push } 2 \text{ a's on} \\
\quad \quad \text{when read } b, \text{ pop 1 a off} \\
\Delta = (q_0, a, e), (q_0, aa) \quad s = q_0 \)
\((q_0, b, a), (q_1, e) \quad F = \{ q_0, q_1 \} \)
\((q_1, b, a), (q_1, e) \)
\[w \mid w \text{ has same # of } a's \text{ as } b's \]

\[\text{stack keeps track of what you've seen more of} \]
\[\text{baaabbabbaaa} \]
\[\text{stack has } \text{bb} \]
\[(s,e,e), (g_0,c) \]
\[\text{bottom marker here seen } 2 \text{ extra } b's \]
\[(g_0,a,a), (g_0,aa) \]
\[\text{used to be more } a's, \text{ now even more excess } a's \]
\[(g_0,b,b), (g_0,bb) \]
\[(g_0,a,b), (g_0,e) \]
\[\text{were more } b's, \text{ no fewer } \]
\[(g_0,b,a), (g_0,e) \]
\[(g_0,a,c), (g_0,a) \]
\[\text{was balanced, now an extra } a \]
\[(g_0,b,c), (g_0,b) \]
\[(g_0,e,c), (f,e) \]
\[\text{only final state} \]