PT for reg lang: If \(L \) is regular then \(\exists n \)

\[
\text{s.t. } \forall w \in L, |w| \geq n \text{ then } w \text{ can be written } wx_1x_2y \text{ where } x_i, y \in \Sigma^*
\]

PT for CFL: If \(L \) is CFL then \(\exists k \)

\[
\text{s.t. } \forall w \in L, |w| \geq k \text{ then } w = uvxyz
\]

where \(|v| > 0 \) or \(|y| > 0 \) and \(u, v, x, y, z \in \Sigma^* \) and \(|vxy| \leq k \)

Observation: since \(V - \Sigma \) is finite, if string \(w \) must have a really tall parse tree, then some nonterminals must have been repeated.
Suppose $G = (V, \Sigma, R, S)$

consider a parse tree of height $|V - \Sigma|$

\[\begin{array}{c}
S \\
A \sqcup X \\
A \\
B \\
C \\
\vdots \\
D \\
a \\
b
\end{array} \]

$\phi(b) = \text{fan out of } b$

$= \text{max fan out of any rule}$

$= \text{most chars on right side of rules}$

most chars in w w/ parse tree of height $|V - \Sigma| = \phi(b)^{|V - \Sigma|}$

if w is longer than $\phi(b)^{|V - \Sigma|}$ then its parse tree has height $|V - \Sigma|$
If height is $\geq |V-\Sigma|$ then some nonterminal is repeated on the longest branch in parse tree that has fewest Δ of nodes

We know $|vy|>0$ otherwise is smaller parse tree.

Cut out or repeat derivation $A \Rightarrow^* A_1 y \Rightarrow^* v A y$ as many times as we want.

$A \Rightarrow^* A_1 y \Rightarrow v v A y y \Rightarrow v v v A y y y \Rightarrow v v v v A y y y y$.

a^n b^m c^n is not CF:

Suppose it is. Then \(\exists k \in \mathbb{N}, \ l \in \mathbb{N} \geq k \Rightarrow \exists w \in \{a,b,c\}^+ \) such that \(w \in L \) and \(w = uvxyz \) where \(uv^i x y^j z \in L \).

Find that \(k \),

Let \(w = a^k b^k c^k \).

Suppose \(w = uvxyz \) where \(|vy| > 0 \)

Suppose \(v \) is all \(a \)'s

\(y \) must be \(b \)'s, \(c \)'s to balance \(a \)'s

but then repeating \(y \) makes \(b \)'s, \(c \)'s out of order.

Suppose \(v \) is all \(b \)'s then \(y \) is all \(c \)'s

and so \(uv^ixy^jz \) has too few \(a \)'s.

Suppose \(v \) is all \(c \)'s then \(y \) is all \(a \)'s

and so \(uv^ixy^jz \) has too few \(b \)'s.

Suppose \(v \) is combo of \(\geq 2 \) diff letters

then repeating \(v \) puts chars out of order.
Suppose \(v \) is \(e \). Then \(y \not= e \) and \(\uparrow \) applies to \(v \).

CFL not closed under \(\land \)

\[
a^mb^n c^m \land a^mb^n c^n = a^mb^n c^n
\]

\[\uparrow\]

CFL \(\Rightarrow \) non-CFL

CFL are closed under \(\ast \)

\(G_1 = (V_1, \Sigma_1, R_1, S_1) \) \hspace{1cm} \(G_2 = (V_2, \Sigma_2, R_2, S_2) \)

\(S \rightarrow S_1 S_2 \) (copy rules from \(R_1, R_2 \) above)

Closure under \(\ast \)

\[
S \rightarrow S_1 S_1 \left| e \right.
\]

Closure under \(\lor \)

\[
S \rightarrow S_1 \left| S_2
\right.
\]
closures under - ? NO - if so, with closure over U we'd have 1 two