\[H = \{ "M" "\langle w \rangle" \mid M \text{ halts on input } w \} \]

\[H \text{ is not recursive. (No TM decides that set)} \]

\[\text{It is impossible to create a program that detects infinite loops} \]

\[H_1 = \{ "M" \mid M \text{ halts on } "M" \} \]

\[H \text{ decidable} \rightarrow H_1 \text{ is decidable} \]

Proof: Suppose \(H \) is decidable via TM \(M_0 \).

Use \(M_0 \) to construct \(M_1 \) that decides \(H_1 \):

1. convert \("M" \) to \("M" "\langle M \rangle" \)
2. run \(M_0 \)
H_1 is not decidable.

Proof: Suppose H_1 is decidable. Then some TM M_1 decides H_1. Construct M^*_w that:

1) input w
2) run M_1 on w
3) if M_1 says 'Y' $(M_1$ halts on w)
4) output w

M^*_w semi-decides \(\overline{H_1} \) if w is garbage or w is encoding of M and M doesn't halt on w.

What does M^*_w do on $"M^*_w"$?

Is $"M^*_w" \in \overline{H_1}$?

Suppose $"M^*_w" \in \overline{H_1}$. Then M_1 doesn't halt on $"M^*_w"$

But also M^*_w halts on $"M^*_w"$ since $"M^*_w"$ is in the set M^*_w semi-decides.

Suppose $"M^*_w" \notin \overline{H_1}$. Then $"M^*_w" \notin \overline{H_1}$ so M^*_w halts on $"M^*_w$ within k steps.

M^*_w is not in H_1.
set that \(M^x\) semi-decides.

\[
\therefore H^x \text{ is not decidable}
\]

\[
\therefore H \text{ is not decidable.}
\]

Given \(M\), **does** \(M\) **halt on** \(e\)?

Undecidable! **Proof:** (we show that if we can solve this new problem we can also solve the halting problem)

\[\text{TM for halting problem}\]

Input \(M, w\)

Create \(M_w\) that:

1. **writes** \(w\) to tape
2. **does** what \(M\) does

\[\text{Ask} \ i \ \text{does} \ M_w \ \text{halt on} \ e?\]

\[\text{Return the answer}\]

If is possible to write, we’ve solved \(H\), can’t solve it, so must be impossible.