Given M, is there any w s.t. M halts on w?

A lg for determining if M halts on e already know undecidable.

reduced
“does M halt on e” 1) Input M

“does M halt on something” 2) Construct \hat{M}^*

3) Determine if there is some input \hat{M}^* halts on

4) Output result of step 3

Construct \hat{M}^* s.t. there is an input \hat{M}^* halts on

if and only if

M halts on e

\hat{M}^* will

1) erase tape

2) do the same thing as M

(start with empty string as input)
NP: solvable in poly-time by some nondeterministic TM

$L_1 \leq_p L_2$ (\(L_1 \) polynomially reducible to \(L_2\))

means can solve \(L_1\) in poly time using \(L_2\) as subroutine

Decision procedure for \(L_1\)

1) Input \(w\) (we want to know if \(w \in L_1\) or not)
2) Construct \(w'\) construct such that
3) determine \(w' \in L_2\)
 \(w' \in L_2 \iff w \in L_1\)
4) output result of 3 and
and copying \(w\) from \(w'\) takes polynomial time
Hamiltonian Path: given a graph \(G \), is there a path visiting each vertex exactly once?

Hamiltonian Cycle: given \(G \), is there a cycle that visits each vertex exactly once?

\[HP \leq_p HC \]

Alg for HP

1) Input \(G \)

2) **Construct \(G' \) as follows**
 - add new vertex \(s \)
 - connect all \(v \in G \) to \(s \)

3) Determine if \(G' \) has HC

4) Output result of 3

need to make \(G' \) so \(G' \) has HC \(\iff \) \(G \) has HP

\(G \)
If G has HP then G' has HC
If G' has HC then G has HP

If G has HP \[u \rightarrow v \] then G' has HC \[s \rightarrow u \rightarrow v \rightarrow s \]
If G' has HC \[s \rightarrow u \rightarrow v \rightarrow s \] then G has HP \[u \rightarrow v \]

NP-hard: L is NP-hard iff for all $L' \in \text{NP}$, $L' \leq_p L$

NP-complete: in NP and NP-hard

NP-complete problems exist!

Ex: CIRCUIT-SAT (given combinational circuit, can set input wires so output is on?)
If A is NP-complete and $A \leq_p B$ then B is also NP-complete.

If some NP-complete problem A can be solved in poly time on standard TM, then anything solvable in poly-time on a nondeterministic TM can be solved in poly time on a standard TM.