Problem 0: Review old quizzes, homeworks, and exams.

Problem 1: Write negations of the following sentences.

(a) Rafael uses steroids but he is not a good hitter.

Either Rafael doesn’t use steroids or he is a good hitter.

(b) If Burt drives a Camaro then Candy likes Burt.

Burt drives a Camaro but Candy doesn’t like him.

(c) Anyone who drives a BMW is rich.

Someone who is not rich drives a BMW.

(d) All dairy farmers have a machine that can milk any cow.

Some dairy farmers's machines all fail to milk some cow.

Problem 2: Show that the following argument form is valid.

\[
\begin{align*}
p & \rightarrow q \\
\neg p & \rightarrow r \\
\therefore \quad & q \lor r
\end{align*}
\]
Problem 3: Design a circuit with four inputs that outputs 1 if and only if at least three of its inputs are 1.
Problem 4: Let \(L(x, y) \) be the predicate “\(x \) lives in \(y \)”. Let \(S(x, y) \) be the predicate “\(x \) shops at \(y \)”. Let the domains of the variables and the truth of the predicates for particular values be as indicated by the tables given below. Use \(P \) for the set of people, \(C \) for the set of cities (ignoring the fact that Columbia and Timonium are not cities), and \(S \) for the set of stores.

<table>
<thead>
<tr>
<th></th>
<th>Columbia</th>
<th>Baltimore</th>
<th>Timonium</th>
<th>Giant</th>
<th>Wegman’s</th>
<th>SuperFresh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eastman</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glenn</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Lawrie</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Binkley</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Hall</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

Write each of the following English statements symbolically and determine whether they are true or false. Explain your answers briefly.

(a) Eastman shops at Giant. \(S(Eastman, Giant) \) – true

(b) Everyone who lives in Columbia shops at Giant. \(\forall x \in P, L(x, Columbia) \rightarrow S(x, Giant) \) – true since Eastman, Glenn, and Lawrie are the only Columbia residents and all shop at Giant.

(c) No one shops at two different stores. \(\forall x \in P, \forall s_1, s_2 \in S, S(x, s_1) \land S(x, s_2) \rightarrow s_1 = s_2 \) – false since Glenn shops at both Giant and Wegman’s.

(d) There is a store whose patrons all live in Columbia. \(\exists s \in S, \forall x \in P, S(x, s) \rightarrow L(x, Columbia) \) – true since the only patron of Wegman’s (Glenn) lives in Columbia.

(e) There is a place whose residents all shop at the same store. \(\exists c \in C, \exists s \in S, \forall p \in P, L(p, c) \rightarrow \exists (p, s) \) – true since all residents of Columbia shop at Giant.

Problem 5: Prove or disprove: for any integers \(a, b, c, \) and \(d \), if \(a + b \mid d \) and \(a + c \mid d \) then \(b + c \mid d \).

Counterexample: let \(a = 2, b = 0, c = 3, d = 10 \). \(2 + 0 \mid 10 \) and \(2 + 3 \mid 10 \) but \(0 + 3 \nmid 10 \).

Problem 6: Find an integer \(r \) such that \(0 \leq r < 13 \) and \(11^8 \equiv r \pmod{13} \).

\[
11^8 \equiv (-2)^8 \equiv ((-2)^4)^2 \equiv 16^2 \equiv 3^2 \equiv 9 \pmod{13}
\]

Problem 7: Prove that \(\sqrt{\frac{1}{6}} \) is irrational.

We first claim that for all integers \(n \), if \(n^2 \equiv 0 \pmod{6} \) then \(n \equiv 0 \pmod{6} \) (prove it!). Now assume that \(\sqrt{\frac{1}{6}} \) is rational. Then by the definition of rational there are integers \(p \) and \(q \) such that \(\frac{p}{q} = \sqrt{\frac{1}{6}} \). We may assume, without loss of generality, that \(\gcd(p, q) = 1 \). But then \(6p^2 = q^2 \) and so \(q^2 \equiv 0 \pmod{6} \). Then by our first claim, \(q \equiv 0 \pmod{6} \), and so \(q = 6k \) for some integer \(k \). By substitution we now have
\[6p^2 = (6k)^2\] and hence \(p^2 = 6k^2\), so \(p^2 \equiv 0 \pmod{6}\) and (by the first claim again), \(p \equiv 0 \pmod{6}\). Now both \(p\) and \(q\) are divisible by 6, so \(\gcd(p, q) \geq 6\), which contradicts \(\gcd(p, q) = 1\). Therefore \(\sqrt{\frac{1}{6}}\) is irrational.

Problem 8: Rewrite each of the following using summation notation.

(a) \(4 + 7 + \cdots + 31\)

\[\sum_{i=1}^{10} 3i + 1\]

(b) \(8 + \cdots + n!n^2\)

\[\sum_{i=2}^{n} it^2\]

(c) \(-2 + 8 - \cdots + 8n^2\)

\[\sum_{i=1}^{2n} (-1)^i \cdot 2i^2\]

Problem 9: Find a formula for \(\sum_{i=1}^{n} 4i + 3\).

\[
\sum_{i=1}^{n} 4i + 3 = \sum_{i=1}^{n} 4i + \sum_{i=1}^{n} 3
\]

\[= 4 \sum_{i=1}^{n} i + 3n\]

\[= 4 \cdot \frac{n(n + 1)}{2} + 3n\]

\[= 2n(n - 1) + 3n\]

\[= 2n^2 + 5n\]

Problem 10: Find the smallest \(k\) such that any amount of at least \(k\) cents can be made with 4-cent and 5-cent stamps. Prove your answer.

\(k = 12\) works.

Base cases \((k = 12, 13, 14, 15)\): \(12 = 3 \cdot 4, 13 = 2 \cdot 4 + 5, 14 = 4 + 2 \cdot 5, 15 = 5 \cdot 5\).

Inductive step: Let \(k \geq 16\) and suppose any amount from 12 cents to \(k - 1\) cents can be made with 4- and 5-cent stamps. Then, since \(12 \leq k - 4 \leq k - 1\) because \(k \geq 16\), the inductive hypothesis says \(k - 4\) cents can be made with 4- and 5-cent stamps. Let \(a\) and \(b\) be the number of 4- and 5-cent stamps used to make \(k - 4\) cents (so \(k - 4 = 4a + 5b\)). Now \(k\) cents can be made with \(a + 1\) 4-cent stamps and \(b\) 5-cent stamps \((k = k - 4 + 4 = 4a + 5b + 4 = 4(a + 1) + 5b)\).
Problem 11: Prove that for any sets A and B, $A \cup (A \cap B) = A$ using no properties of sets other than the definitions of the set operations.

Let $x \in A \cup (A \cap B)$. Then either $x \in A$ or $x \in A \cap B$ by definition of \cup. In the former case we immediately have $x \in A$. In the latter case, $x \in A$ and $x \in B$ by definition of \cap. So in either case $x \in A$. Therefore $A \cup (A \cap B) \subseteq A$.

Let $x \in A$. Then $x \in A \cup (A \cap B)$, so by definition of \cup, $x \in A \cup (A \cap B)$. Therefore $A \subseteq A \cup (A \cap B)$.

Since $A \cup (A \cap B) \subseteq A$ and $A \subseteq A \cup (A \cap B)$, $A = A \cup (A \cap B)$.

Problem 12: Prove that, for any sets A, B, C, and D, if $C \subseteq A - B$ and $D \subseteq B - A$ then C and D are disjoint.

Let A, B, C, and D be sets such that $C \subseteq A - B$ and $D \subseteq B - A$. Suppose C and D are not disjoint. Then, by definition of disjoint, there exists $x \in C \cap D$, so $x \in C$ and $x \in D$. Now, since $C \subseteq A - B$ and $x \in C$, $x \in A - B$. Similarly, $x \in B - A$. Therefore, by definition of set difference, $x \in A$ and $x \notin B$ and $x \in B$ and $x \notin A$, which is a contradiction. Therefore C and D are disjoint.

Problem 13: Prove or disprove: for any sets A and B, $\mathcal{P}(A - B) = \mathcal{P}(A) - \mathcal{P}(B)$.

Counterexample: let $A = \{1, 2\}$ and $B = \{2\}$. Then $\mathcal{P}(A - B) = \mathcal{P}(\{1\}) = \{\emptyset, \{1\}\}$ and $\mathcal{P}(A) - \mathcal{P}(B) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\} - \{\emptyset, \{2\}\} = \{\{1\}, \{1, 2\}\}$.

Problem 14: A state issues license plates in two formats: either two letters followed by three numbers, or 5 numbers with a letter somewhere between them (but not at the ends). How many different license plates can the state issue?

There are $26 \cdot 26 \cdot 10 \cdot 10 \cdot 10$ plates of the first kind and $10^5 \cdot 4 \cdot 26$ of the second kind (choose digits, then choose position for letter, then choose the letter) for a total of 11076000.

Problem 15: Imagine a game like poker but played with 4 card hands. Which should be a better hand: one pair or “melting pot”, which is four cards all of different non-consecutive ranks and different suits.

There are $13 \cdot \binom{4}{2} \cdot \binom{12}{2} \cdot 4 \cdot 4 = 82368$ one pair hands and fewer than $13 \cdot 12 \cdot 11 \cdot 10 = 17160$ melting pot hands (that total includes some straights). So melting pot should beat one pair.

Problem 16: 50 people were surveyed about what TV shows they watch. 21 reported that they watch The Amazing Race, 25 watch Veronica Mars, and 11 watch Arrested Development. 3 watch AD and TAR, 9 watch TAR and VM, 3 watch VM and 1 watches all 3. Fill in the Venn diagram that shows how many people watch each possible combination of shows.
Problem 17: 12 people are to be seated for a jury. The jury pool consists of 20 people: 7 college students, 10 retirees, and 3 working professionals. How many possible juries are there? How many have an equal number from each group? How many include no retirees? How many include at most 3 retirees? How many include all the college students? How many include more working professionals than college students?

There are \(\binom{20}{12} \) possible juries. None have an equal number from each group since there aren’t enough working professionals. None include no retirees because there aren’t enough non-retirees. \(\binom{10}{2} + \binom{10}{3} \cdot \binom{10}{9} \) have at most 3 retirees. \(\binom{13}{3} \) include all the college students. \(\binom{7}{2} \cdot \binom{10}{7} \cdot \binom{10}{9} \) include 3 working professionals and 2 college students. \(\binom{7}{1} \cdot \binom{10}{8} \) include 3 professionals and 1 college student, \(\binom{10}{9} \) include 3 professionals and no college student, \(\binom{7}{2} \cdot \binom{10}{1} \cdot \binom{9}{9} \) include 2 professionals and 1 college student, and \(\binom{3}{2} \) includes 2 professionals and no college students, for a total of

\[
\binom{3}{2} + \binom{7}{2} \cdot \binom{10}{7} + \binom{7}{1} \cdot \binom{10}{8} + \binom{10}{9} + \binom{3}{2} \cdot \binom{7}{1} \cdot \binom{10}{9} + \binom{3}{2}
\]

with more professionals than college students.

Problem 18: The game Can’t Stop is played with 4 indistinguishable 6-sided dice. How many distinct outcomes are there of rolling the dice?

\(\binom{9}{4} \).

Problem 19: Define \(f : \mathbb{R} \to \mathbb{R} \) by \(f(x) = (x - 1)(x + 2)(x + 3) \). Is \(f \) 1-1? Is \(f \) onto? Explain your answers.

\(f \) is not one-to-one because \(f(1) = f(-2) = f(-3) = 0 \). \(f \) is onto: \(\lim_{x \to \infty} = \infty \) and \(\lim_{x \to -\infty} = -\infty \), and \(f \) is continuous, so, by the intermediate value theorem for any \(y \) there is an \(x \) such that \(f(x) = y \).

(Intuitively: \(f \) is a cubic and so goes to positive and negative infinity, so it intersects every horizontal line at least once.)
Problem 20: Prove that the set of squares of integers \(\{0, 1, 4, \ldots \} \) is countably infinite by finding a bijection between that set and \(\mathbb{Z}^+ \).

Define \(f : \{0, 1, 4, \ldots \} \rightarrow \mathbb{Z}^+ \) by \(f(x) = \sqrt{x} + 1 \). With \(\{0, 1, 4, \ldots \} \) as the domain and \(\mathbb{Z}^+ \) as the co-domain, \(f \) is one-to-one and onto.

Problem 21: Prove that \(\mathbb{Z} \times \mathbb{Z} \) is countably infinite.

Since \(\mathbb{Z} \) is countably infinite, there is a bijection from \(\mathbb{Z} \) to \(\mathbb{N} \). Since \(\mathbb{N} \times \mathbb{N} \) is countably infinite, there is a bijection \(g : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Z}^+ \). Use \(f \) and \(g \) to define a new function \(h : \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}^+ \) where \(h(a, b) = g(f(a), f(b)) \). Since \(f \) and \(g \) are bijections, \(h \) is too since it is the composition of two bijections (with a Cartesian product thrown in, but it can be shown that that does not affect the one-to-one-ness or the onto-ness).

This is a formalism of the same argument used to show that \(\mathbb{N} \times \mathbb{N} \) is countable: the elements of \(\mathbb{Z} \times \mathbb{Z} \) are arranged in a table with the rows and columns ordered based on \(f \) instead of in simple increasing order (since that would never get to negative numbers).

\[
\begin{array}{cccc}
(f(1), f(1)) & (f(1), f(2)) & (f(1), f(3)) & \ldots \\
(f(2), f(1)) & (f(2), f(2)) & (f(2), f(3)) & \ldots \\
(f(3), f(1)) & (f(3), f(2)) & (f(3), f(3)) & \ldots \\
\vdots & \vdots & \vdots & \ddots \\
\end{array}
\]

The elements of the table are then listed diagonal by diagonal just as for the elements of \(\mathbb{N} \times \mathbb{N} \).

Problem 22: Is the set of infinite sequences of positive integers countable or uncountable? Justify your answer.

Let \(S = \{s \mid s \text{ is a sequence of positive integers}\} \). \(S \) is uncountable.

Suppose \(f : \mathbb{Z}^+ \rightarrow S \). We will show that \(f \) is not onto and hence is not a bijection by constructing a sequence \(s \) such that \(f(x) \neq s \) for any \(x \in \mathbb{Z}^+ \): let \(s_i = 1^+ \) the \(i \)th element of the sequence \(f(i) \). For any \(x \in \mathbb{Z}^+ \), \(f(x) \neq s \) since they differ in the \(x \)th place. Therefore \(f \) is not onto and hence is not a bijection.

Since \(f \) was arbitrarily chosen, no function from \(\mathbb{Z}^+ \) to \(S \) can be a bijection, so \(S \) is not countably infinite. Since it is clearly not finite, it must be uncountable.

Problem 23: Order the following functions so that if \(f \) comes before \(g \), then \(f \) is of order at most \(g \) (\(f(x) \) is \(O(g(x)) \)). Indicate which functions can be switched in the lists (in other words, indicate which are of the same order as each other).

\[
x \log x \quad x \quad 2^x \quad 4^x \quad 8x + 1 \quad x^2 + x + 400 \quad x(\log x)^2
\]

(This won’t be on the exam).
\[x, \ 8x + 1 \]
\[x \log x \]
\[x(\log x)^2 \]
\[x^2 + x + 400 \]
\[2^x \]
\[4^x \]