CS 702: Midterm Exam Practice Problems

Problem 1: Suppose we have two implementations of a caching multithreaded web server. Implementation #1 uses user-level threads and can process a cache hit in 15ms of CPU time and a cache miss in 15ms of CPU time plus 35ms during which it must wait for I/O. Implementation #2 uses kernel-level threads and can process cache hits in 20ms of CPU time and cache misses in 40ms of CPU time plus 35ms during which it must wait for I/O.

(a) Assuming that 75% of requests are for pages in the cache, which implementation can process more requests per unit time?

(b) What if only 60% of requests are for pages that are in the cache?

In both cases explain your answers, and assume that the kernel can interleave I/O operations.

Problem 2: Recall the proposed use of select to avoid having one user-level thread block all others when it blocks for I/O (see p. 92). User level threads would call select before a potentially blocking I/O call in order to determine if the call would block. Consider the following pseudocode implementation of this idea:

```c
while (!select(cin))
    ; /* do nothing */

int data;
cin >> data;
```

Is this an ideal solution to the problem (that is, is this as good as kernel-level threads)? (Hint: what is the process doing while it waits for input to become available?)

Problem 3: Draw a diagram showing the parent/child relationships among the processes created by the following code fragment. Also show which call to fork created each process.

```c
pid = fork(); /* Call #1 */

if (pid != 0)
    fork();    /* Call #2 */

fork();    /* Call #3 */
```

Problem 4: Consider Peterson’s solution to the mutual exclusion problem (see pp. 105-6). Explain how this solution satisfies the criterion “no process should have to wait forever to enter its critical region” (criterion #4 on p. 102). Consider the following attempt to generalize Peterson’s solution to to three processes. Assume N has been #defined to 3 and that the processes are numbered 0, 1, and 2. Does this proposal meet all the criteria for solutions to the mutual exclusion problem?

```c
void enter_region(int process)
    int other1 = (process + 1) % 3; /* other1 and other2 are */
    int other2 = (process + 2) % 3; /* ids of the other pros */
    interested[process] = TRUE;
    turn = other1;
    while (turn != process
        && (interested[other1] || interested[other2]))
        ; /* do nothing */

void leave_region(int process)
    interested[process] = false;
```
Problem 5: Complete the following pseudocode definition of a condition variable using semaphores.

class ConditionVariable
{
 Semaphore sem = ???;
 Semaphore mutex = 1;
 // declare any counters you need

 void wait()
 {

 }

 void signal()
 {

 }

 void broadcast()
 {

 }
}

Problem 6: Suppose there are several files stored on a system containing information about a number of schools. The files are named `info_001.txt`, `info_002.txt`, etc. There is a file that records which school corresponds to which file. The file will look something like the following.

001: Virginia:
002: Loyola College in Maryland:
003: Boston College:
004: Texas A&M:

Write a shell script that, given the complete name of a school, outputs the corresponding file. For example .`/problem_6.sh Virginia` should output the contents of `info_001.txt`. Write the script so that if the file does not exist or if the school name is not in the index, the shell script prints an error message.