Lecture 25: Time Efficiency of Algorithms (con’t)

The efficiency of an algorithm may depend on the data.

ex. Do a linear search for the number 18 in array A.

Best case:

Worst case:

Average case:

The efficiency of some algorithms do NOT depend on the data.

To judge efficiency we can time the algorithms or count operations. (Operation =

Examples of counting operations:

<table>
<thead>
<tr>
<th>Number of Operations</th>
<th>Big-O (really Θ)</th>
</tr>
</thead>
</table>
| 1) for (int j = 0; j < N; j++)
 \[X = X * X + 2 * Y; \] | | |
| 2) for (int j = 0; j < N; j++)
 for (int i = 0; i < N; i++)
 \[T = T + 2 * R - Y; \] | | |
| 3) for (int j = 0; j < N; j++)
 for (int i = 0; i <=j; i++)
 if (A[i] > 100)
 \[A[i] = 10; \] | | |

Here the number of operations varies. Why?
It is customary to count the number of comparisons.

<table>
<thead>
<tr>
<th>j =</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>. . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>Times thru i loop</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Each time through the i loop, ______ comparisons are performed

Total Number of Comparisons =

So Big-O:
4) for (int j = 1; j < N; j++)
 for (int i = 0; i < N - j; i++)
 if (A[i] > A[i + 1])

 Temp = A[i];
 A[i] = A[i + 1];
 A[i + 1] = Temp;
 }

<table>
<thead>
<tr>
<th>j</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Times thru i loop</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Number of Comparisons Big-O

5) for (int j = 1; j <= N^2; j++)
 for (int i = 1; i <= j; i++)
 if (A[j] == A[i])
 T = T + 3;

<table>
<thead>
<tr>
<th>j</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Times thru i loop</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of Comparisons Big-O
When the Efficiency Depends on the Data—Some Classic Algorithms

Linear Search

\[
i \leftarrow 0 \\
found \leftarrow false \\
while not found \\
\hspace{1cm} if A[i] == Target \\
\hspace{1cm} else
\]

Best Case:

Worst Case:

Average Case:

Binary Search

\[
First \leftarrow 0 \\
Last \leftarrow N - 1 \\
found \leftarrow false \\
while not found and First != Last \\
\hspace{1cm} Mid \leftarrow (First + Last) / 2 \\
\hspace{1cm} if A[Mid] == Target \\
\hspace{1cm} else if A[Mid] > Target \\
\hspace{1cm} else
\hspace{1cm} if First == Last \\
\hspace{1cm} \hspace{1cm} if A[First] == Target \\
\hspace{1cm} else \\
\]

Best Case:

Worst Case:

Average Case:
Insertion Sort

```
for i = 1 to N - 1
    Temp ← A[i]
    j ← i - 1
    while j >= 0 and A[j] > Temp
        j ← j - 1
    A[j+1] ← Temp        // stuff
```

Best Case

Worst Case

Average Case

Merge Sort

Time(N) =

Does the time taken by this algorithm depend on the data?

QuickSort

Pick a Pivot point
move all elements < Pivot to the left and elements >= Pivot to the right
(call these Sets I and II)
move the Pivot to a position separating Sets I and II
QuickSort Set I
QuickSort Set II

If Sets I and II are equal in size Time(N) =

Does the time taken by this algorithm depend on the data?