Predicate Calculus (con’t)

Negations of quantified statements:

The negation of \(\forall \) involves \(\exists \). The negation of \(\exists \) involves \(\forall \).

<table>
<thead>
<tr>
<th>Informal:</th>
<th>Formal quantified:</th>
<th>Formal negation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>All CS majors are nerds.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Some beautiful people are currently in KH007.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No fleas have personality.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

True or false?

1) All elephants in the Fitness Center are purple.
2) \(\forall \) dogs \(d \), if \(d \) is in KH007 now, \(d \) is a pointer.

Multiple quantifiers

A statement can contain more than 1 quantifier.

ex: All classes have someone who’s a curve-breaker.

How to formally state this?

ex: Some dorms contain all partiers.

How to formally state this?

How would you negate these statements?

\(\forall \) Java program \(p \), \(\exists \) a line in \(p \) that contains the word “main”.

\(\exists \) computer science course \(x \) such that \(\forall \) lecture of \(x \), the lecture is totally incomprehensible.
To negate $\forall x, \exists y$ such that $P(x,y)$

use $\exists x$ such that $\forall y, \sim P(x,y)$

ex: All classes have someone who’s a curve-breaker.

Negation:

How about negating:
“Some classes contain some toadies.”

“All students earn all A’s.”

Universal conditional statement:

$\forall x \in D$, if $P(x)$ then $Q(x)$.

ex: For all students s, if s studies, s will succeed.

| Contrapositive |
| Converse |
| Inverse |

Lecture 5p. 2
Necessary and Sufficient Conditions, Only if:
For all students s, studying is a necessary condition for success.

For all students s, studying is a sufficient condition for success.

For all students s, s will succeed only if s studies.

Arguments Containing Quantified Statements

All CS majors are intelligent.
Mary is a CS major.
∴ Mary is intelligent.

Demonstration with diagrams:

\[
\forall x, \text{if } P(x) \text{ is true, then } Q(x) \text{ is true.}
\text{a makes } P(x) \text{ true.}
∴ \text{a makes } Q(x) \text{ true.}
\]

\text{Universal Modus Ponens}

Errors (in quantified form)

All males are genetically challenged.
Pat is genetically challenged.
∴ Pat is a male.

All flies are friendly.
Greg is not a fly.
∴ Greg is not friendly.
More examples:
All yaks are hairy.
Cleo is not a yak.
∴ Cleo is not hairy.

All yaks are hairy.
Cleo is hairy.
∴ Cleo is a yak.

Question: Can computer programs be written to “reason” using predicate calculus?

Prolog

Prolog program = **database** consisting of **facts** and/or **rules**

From the database the user can extract information by means of **queries**.

ex: program, **prey.pl**:

```prolog
eat(bear, fish).
et(bear, fox).
et(deer, grass).
animal(bear).
animal(fish).
animal(fox).
animal(deer).
plant(grass).

prey(X) :-
et(_,X),
animal(X).
```

queries:

```prolog
animal(bear).
et(bear, rabbit).
eat(bear, A).
et(A, B), plant(B).
```

Entered and compiled on Linux with
```
> prolog
?- [prey].
```

In the interactive environment, the user enters these at the prompt `| ?-`.

System will answer, “yes”, “no” or supply values for variables.