Graph Generators

- Given the diverse nature of graphs as combinatorial structures we can define numerous types of graphs
 - Some drawn from applications
 - Others have mathematical properties found in real graphs
- Graph generators can be used to test the algorithms that we write

Random Edges

- Simplest graph to generate
 - Given \(V \) vertices, generate pairs of numbers between 0 and \(V-1 \)
 - Likely result in a graph with self-loops and parallel edges (multigraph)
 - If we limit edges to those in a simple graph, generate many more edges
 - Only good for a sparse graph
 - Generate \(E \) edges
- This is the generator we’ve used so far

Random Graphs

- Considers all possible edges and include each in the graph with a fixed probability \(p \)
 - \(p \) is calculate such that \(p \times \text{total number of possible edges} \) is \(E \), the number of edges in the graph
 - Given some \(E \) and \(V \), what is the formula for \(p \)?

- Code generates close to \(E \) edges, but may not have exactly \(E \) edges - Why?

```c
Graph graphRandom(int vertices, int edges) {
    int i, j;
    Edge theEdge;
    Graph theGraph = graphInit(vertices);
    double p =

    for (i = 0 ; i < vertices; i++)
        for (j = 0; j < i; j++) {
            if (graphInsert(theGraph,createEdge(i, j, &theEdge)));
        }
    return theGraph;
}
```
Pros and Cons of Random Graph Generator

- **Pro**
 - Algorithms well-studied
 - Easy to implement

- **Con**
 - Do not necessarily have properties similar to ones we see in real world applications
 - Graphs usually model maps, circuits, schedules, transactions, etc.

k-Neighbor Graph

- Modification of a random-edge graph
 1. Randomly pick first vertex \(v \)
 2. Randomly pick second from among those whose indices are within a fixed constant \(k \) of \(v \)

- Graphs exhibit locality not found in random graphs

Euclidian Neighbor Graph

- First generates \(V \) points on a plane with random coordinates between 0 and 1
- Then generated edges
 - Connecting any two points within distance \(d \) of one another
 - If \(d \) is small,
 - If \(d \) is large,
- Models graphs that represent maps, circuits, etc.
- Drawbacks:

Transaction Graphs (Example)

- Consider Graph where
 - the vertices are all the phone numbers associated with Loyola (410-617-XXXX) and the numbers called on those phones
 - an edge represents a phone call placed at a Loyola phone to another phone
- What would the graph look like (dense or sparse)?

- What would need to be added to our collection of graph functions to deal with phone numbers representing vertices?
Function Call Graphs
- Vertex represents a function in a program
- In the static version, an edge represents a function that calls another in the text of the program
 - What does this study?

- In the dynamic version, an edge represents a function that calls another at run time
 - What does this study?

Other Graphs
- Interval Graph
 - Vertex represents an interval on the real line
 - Edge exists if two intervals intersect
- de Bruijin Graph
 - Number of vertices is power of 2
 - For each vertex i there edge from i to $2i$ and an edge from i to $(2i + 1) \mod V$