Minimum Spanning Tree

- Operates on graphs where we associate weights or costs with each edge
- Find the lowest-cost way to connect all of the points
- Often think of weights as distances
 - What is "the vertex closest to x"?
- Weights need not be proportional to distance
 - Time to accomplish a task
 - Represent the cost to traverse the edge

Euclidean MST

- Present problems in terms of distance to appeal to intuition
 - "short" edge ≈ "low-weight" edge
 - By inspection, longer edges have higher weights
 - Algorithms can take advantage of geometric nature

MST Definition

- A minimum spanning tree (MST) of a weighted graph
 - If weights are positive, MST is set of edges with minimal total weight that connects all vertices
 - If edges have equal weights, the spanning tree may not be unique

Nomenclature

- Creating minimal trees
 - one have the smallest weight
 - MST
 - minimal spanning tree
 - minimum-weight spanning tree
- Minimal – edge of minimum weight
- Maximal – edge of maximal weight

Representations

- Focus on weighted undirected graphs
- How do the dense and sparse graph representations have to be changed?
Parallel Edges

- Adjacency Matrix
 - No Parallel Edges
 - Policies for dealing with parallel edges
 - Keep the lowest weight
 - Keep the highest weight
 - Single edge is the sum of the weights

- Adjacency Lists
 - Keep parallel edges
 - Use one of policies mentioned above

Representing an MST

- Numerous options
 - A graph
 - A linked list of edges
 - A vector of pointers to edges
 - A vertex-indexed vector with parent links

- Choice is of little consequence
 - We can easily convert one representation to another