MST and Prim’s Algorithm

Underlying Principles
- Finding the MST has been studied long before development of modern data structures
- New algorithms differ from old ones in the use of these data structures
- Find MST for graphs with billions of edges

Basic Properties
- Adding an edge to any tree creates a unique cycle
 - Basis for fundamental MST properties

Cycle Property
- Given a graph G, consider the graph G’ defined by adding an edge E to G. Adding E to a MST of G and deleting a maximal edge on the resulting cycle gives an MST of G’

Property
- Used to build a minimum spanning tree
- Assume that you have already selected some edges for the minimum spanning tree
- Explanation
 - Cut - graph partition of vertices into two disjoint sets
 - Crossing edge - an edge that connects a vertex in one set with a vertex in the other
• Suppose edges X are part of a minimum spanning tree $G=(V,E)$. Pick any subset of nodes S for which X does not cross between S and $V-S$, and let e be the lightest edge across this partition. Then $X \cup \{e\}$ is part of some MST.

• Proof by contradiction
 - Suppose e is a minimal crossing edge that it is not in any MST, let’s say T
 - If e is added to T, then there is a cycle and at least one other crossing edge, f
 - Since e is a minimal crossing edge, f must be equal or higher weight
 - New spanning tree created of equal or lower weight by removing f
 - This contradicts the minimality of T

MST Algorithms

• Prim’s algorithm
 - Start with any vertex as a single-vertex MST
 - Add V-1 edges to it
 - Always take a minimal edge that connects a vertex on MST to a vertex no yet on MST

• Krusgal’s algorithm
 - Process edges in order of their length (shortest first)
 - Add edge if it does not form a cycle with edges previously added
 - Stop after V-1 edges

• Boruvvka’s algorithm
 - Add all edges that connect each vertex to its closest neighbor
 - Results in a forest of MST subtrees
 - Add to the MST the edges that connect each tree to a closest neighbor
 - Iterate until there is just one tree

High-level operations

• Find a minimal edge connecting two subtrees
• Determine whether adding an edge would create a cycle
• Delete the longest edge on a cycle

• Develop algorithms and data structures to support operations

Prim’s Algorithm

• Simplest MST algorithm
• Method of choice for dense graphs
• Idea
 - Maintain a cut of the graph comprised of tree vertices and nontree vertices
 - To begin, put any vertex on the MST
 - Add minimal crossing edge
 - Repeat V-1 times to put all vertices on the tree
• Always interested in the shortest edge that goes from a tree vertex to a nontree vertex
Incremental Change

- Adding a vertex to the MST is an incremental change
- When adding vertex v, the only possible change is that the addition of v made w (each nontree vertex) closer to the tree
- Data Structure Requirements:
 - o
 - o
 - o
 - o

Simplest Implementation

- After adding each edge
 - o Check whether new edge brought any nontree vertex closer
 - o Find the next edge
- How? Pass through the incident edges to new vertex
 - o Update weights
 - o Determine the next closest edge
- Running Time:

Pseudo Code

- Initialize three arrays
 - o spanTree of size V initialized to not visited
 - o closestEdge of size V initialized to itself
 - o weightArray of size V+1 initialized to SENTINAL_WEIGHT
- Put vertex zero in the tree
 - o spanTree[0] ← 0
 - o chosenVertex ← 0
- Iterate over the vertices while there is still a vertex to add
 - o previousVertex ← chosenVertex
 - o spanTree[chosenVertex] = closestEdge[chosenVertex]
 - o chosenVertex ← V
 - o Iterate over each vertex
 - If it (possibleVertex) is not in the spanning tree
 - If it is adjacent to previousVertex and this edge makes it closer to the Tree
 - o weightArray[possibleVertex] ← edge weight
 - o closestEdge[possibleVertex] ← previousVertex
 - If weight of possibleVertex is less than the weight of the chosenVertex
 - o chosenVertex ← possibleVertex
Priority First Implementation

- When graph is sparse, there are fewer than V steps to perform each operation
- Each step add potential edges to the edge collection (fringe)
- Algorithm
 - Begin with self loop
 - Move minimal edge from the edge collection to the tree
 - Visit the vertex edge leads to
 - Add incident edges that lead to nontree vertices to collection
 - Replace longer edge when two edges in the collection point to the same vertex
- What data structure should be used for collection?
- Running time:

Psuedo Code

- Create three arrays and initialize two
 - spanTree of size V to not visited
 - closestEdge of size V to not visited
 - weight of size V
- Make zero vertex the root of the tree
 - closestEdge[0] ← 0
 - Insert into priority queue(0,0) for (id, weight)
- While the priority queue is not empty
 - chosenVertex ← dequeue priority queue
 - spanTree[chosenVertex] ← closestEdge[chosenVertex]
 - Iterate over vertices adjacent to the chosenVertex
 - If candidateVertex is not adjacent to the tree
 - Insert into priority queue(candidateVertex, edge weight)
 - weight[candidateVertex] ← edge weight
 - closestEdge[candidateVertex] ← chosenVertex
 - Else if candidate vertex is not in the spanning tree and the edge make it closer to the tree
 - Update priority queue
 (candidateVertex, edge weight)
 - weight [candidateVertex] ← edge weight
 - closestEdge [candidateVertex] ← chosenVertex