Information Retrieval Applications in Software Maintenance and Evolution

David Binkley
Dawn Lawrie
Computer Science Department, Loyola University Maryland, Baltimore, Maryland, U.S.A.

Abstract
There is a growing interest in creating tools that can assist engineers in all phases of the software life cycle. This assistance requires techniques that go beyond traditional static and dynamic analysis. An example of such a technique is the application of information retrieval (IR), which exploits information found in a project’s natural language. Such information can be extracted from the source code’s identifiers and comments and in artifacts associated with the project, such as the requirements. The techniques described pertain to the maintenance and evolution phase of the software life cycle and focus on problems such as feature location and impact analysis. These techniques highlight the bright future that IR brings to addressing software engineering problems.

INTRODUCTION
The goal of this entry is to survey the application of Information Retrieval (IR) to the challenges encountered in Software Engineering (SE) during the maintenance and evolution of a software project—that is, problems encountered after the product’s initial release (e.g., feature location, developer identification, and impact analysis).

It is a companion to the Information Retrieval Applications in Software Development p., entry which considers the application of IR techniques to problems encountered during initial software development. That entry also provides some history, motivation, and forward-looking thoughts on the future of IR techniques in SE.

Fig. 1 illustrates how the two entries relate to each other and to two other areas of computer science with overlapping goals. The left semicircle of the circle labeled IR encompasses the application of IR techniques to the problems encountered during initial software development. The right semicircle includes the applications considered in this entry.

Most of the background terminology and glossary terms are the same and can be found at the beginning of the companion entry. One term and one technique, not required in the previous entry, are defined here. First, the term accuracy denotes a measure of the total percentage of correct responses (the ratio of correctly predicted to all). Using the notation and example from the companion entry, accuracy is defined as $A = (CN + CP)/(CN + FP + FN + CP)$ and in the example has the value 6/10. For large, diverse IR collections, this measure is often misleading as, for example, high accuracy can be attained by simply retrieving the empty set.

The technique not mentioned previously is Latent Dirichlet Allocation (LDA), which was introduced as a more theoretically sound and complex alternative version of Latent Semantic Indexing (LSI). In an LDA model, terms are automatically grouped together into topics. The advantage that LDA brings is that each document is assumed to contain multiple topics. Furthermore, these topics have differing likelihoods (probabilities); thus, a document is represented using a collection of topic probabilities.

As with the companion entry, this entry favors techniques presented with sufficient technical detail to allow replication and is biased toward techniques that report results from empirical study. The applications are presented roughly in the order that these activities are found in the software life cycle. Given the large literature base, the selected techniques and cited work should be taken as representative rather than exhaustive.

FEATURE/CONCEPT LOCATION
The following sections consider the application of IR to problems faced by SE during maintenance and evolution roughly in the order that they are encountered in the software life cycle. Each section first briefly defines the problem considered and then describes its importance and the current state of the art. This is followed by a presentation of the relevant IR techniques.

To begin with, at present there is no widely agreed-upon definition for feature location, concept location, or even the existence of a difference between them. Some differentiate based on the analysis technique where concept location uses static analysis and feature location uses...
dynamic analysis (often of execution traces). Still others define features as those concepts captured by a use case and thus stemming from a functional requirement. Under this interpretation, all features are concepts, but not vice versa. Said another way, features are concepts associated with user visible functionality. Concepts that are not features stem from the problem or solution domain, for example, security (although to further complicate the issue some would argue that security is a concern and not a concept). While the reminder of this section uses the term feature location and the techniques described are dominated by static analyzes, it is agnostic as to the similarities and differences between feature, concept, and concern location. Feature location, traditionally performed as an intuitive and informal process, aims to identify parts of a software system that implement a specific functionality. It forms a prerequisite to many software evolution tasks, most notably program comprehension, and is thus one of the most common activities undertaken by maintainers.

Historically, most programmers use regular expression search (via grep, or an IDE variant) to help them locate items of interest in the source code and documentation. In this scenario, the feature extraction problem is still being solved at the line-by-line level. Recent tools for feature location have been based on static or dynamic analysis. These analyses often have low precision and recall. In particular, dynamic analyses are often unable to distinguish between overlapping features, while static analyses rarely identify entities contributing to a specific execution scenario. To improve feature location, better tool support is needed for large and complex modern software. In fact, feature location is one of the most common applications of IR to SE.

This section considers five techniques. The first is a clever “black-box” application. The next two use IR techniques as black boxes, but manipulate the results in some fashion. Finally, the last two approaches show increased integration of IR ideas into solutions for SE problems, a trend that is expected to continue. The first technique uses LSI to accomplish feature location in an “off the shelf” technique. In contrast to categorizing modules into concepts and non-concepts, this approach finds the modules related to a given feature based on a free-text user query. Queries can also be used to identify variables related to a term or phrase within the context of the software system. This avoids the user needing advanced knowledge of the terms used in the code.

In comparison with code-based methods, LSI is better able to identify words from the source code that relate to a user query within the context of the software system. In a case study using the 95,000-line of code (LoC) C program, mosaic, the approach had an average precision of 12% (almost double existing dependence-based approaches) and outperformed text-based retrieval tools such as grep. The second approach implements the serial combination of LSI, treated as a black box, and Formal Concept Analysis (FCA). One advantage of FCA is that it provides an intentional description for each feature and offers the user useful cues through exploration of the resulting lattice.

The approach has seven steps. First, a corpus is created by extracting the identifiers and comments from each source-code module. LSI is used to create an index for this corpus. A developer then provides a query (a set of terms that describe the feature of interest). Similarities between the user query and modules in the LSI space are used to return a ranked list of modules. In preparation for FCA, the approach uses the top k descriptive terms from the first n modules in the ranked list, which are retained using Kuhn’s technique. Using these modules as objects and descriptive terms as attributes, bottom-up FCA is used to build a concept lattice. Finally, the user can browse the lattice and refine the query as needed.

Testing with different configurations yields the recommendation that n range from 80 to 100 and k from 10 to 25. Fewer than 10 attributes produces weak clustering capacity, while more than 25 attributes creates too many lattice nodes. For example, locating the feature print page in the source code of Eclipse 3.16 returns the methods getBounds, startPage, endPage, startJob, endJob, and cancelJob. The following terms are selected from the identifiers and comments of these
The extracted hard words are used to form a VSM. The initial specific module sets for each feature are then generated in two steps. First, cosine similarity is used to rank each module’s similarity to the feature. Then, for each feature list, a division point is chosen as the largest difference between a consecutive pair of rankings. The modules before this division point form the initial set of specific modules used for the feature.

As a list of all relevant modules, the ranked list is inaccurate in two ways. First, it misses some modules due to the lack of corresponding descriptions in the feature, and, second, it includes some unwanted modules because of the vagueness of natural language prose in describing a feature. These inaccuracies are overcome using the branch-reserving call graph (BRCG), which helps identify additional modules. The BRCG is an expansion of the Control Flow Graph (CFG) that includes branching and sequential information. Pruning the BRCG supports the efficient implementation of the following algorithm. Consider a call, c, to a method that is initially a specific module. Calls in the same block as c, and those in blocks within which it is nested, are relevant to c and thus to the corresponding feature. After determining the relevant modules of each feature, the final step is to determine the specific module sets. A module relevant to a feature and only to that feature is retained as a module specific to that feature.

An empirical study considered two programs. Of all 21 features in the first program, 66.67% were assigned the correct specific modules during the first step. This result improves to 85.71% after analyzing the relevant modules. Slightly better results were obtained with the second program. In comparing the two, it was clear that the feature descriptions in the second program were more precise than those in the first. IR techniques are highly subject to the quality of the input artifacts—in this case, program identifiers.

Compared to older static approaches, Zhao et al. method is fully automated. However, a maintainer must describe all the features before locating a specific feature. Furthermore, the approach is non-interactive, which prevents a maintainer from building up knowledge about the features while working with the system.

The second method to involve greater integration of IR techniques is unusual as it incorporates term proximity. Most IR techniques ignore the location of terms within an artifact because it usually does not improve performance enough to make it worth the computational expense. In this approach, Fry et al. mined aspects (cross cutting concerns) in requirements using a semi-automated approach that links the information about occurrences of verbs and their direct objects (DOs). In particular, a verb–direct object pair is defined to be two colocated identifiers in which the first identifier is an action or verb, and the second identifier is used as a direct object of the first.

To motivate the use of DOs, consider searching for a particular kind of removal in a program. Verbs such as
remove frequently act on many different objects in a single program, such as attribute, screen.
Verb and DO information is explicitly represented in the program’s action-oriented identifier graph (AOIG), which has three levels of nodes. Each top layer node represents either a verb or a DO. The middle layer explicitly represents the pairing of a verb with a DO. The bottom layer includes a use node for each occurrence of a verb–DO pair in a module’s comments or code.

An AOIG has two kinds of edges: a pairing edge connects a node in the top layer to the corresponding node in the middle layer, and a use edge connects verb–DO pair nodes in the middle layer to each use node found in the bottom layer. Although a verb or DO node may have edges to multiple verb–DO nodes, a verb–DO node has only two incoming edges: one from the verb node and one from the DO node involved in the relation.

A search takes as input two parallel queries: a Verb Query and a Direct-Object Query. Working with the associations in the AOIG, these two are expanded (potentially with the aid of the user). For example, in an experiment starting from the query “save(verb query), auctions(DO query),” the tool recommends adding the direct object file, as file is close to auctions in the AOIG. This recommendation leads to improved query effectiveness. Overall, the experiment demonstrated that the new approach was more consistent and more effective than Eclipse’s built-in lexical search and a modified Google Eclipse search.

FAULT PREDICTION

Fault prediction is the process of identifying faulty modules before an actual fault is detected. It permits, for example, engineers to concentrate their testing effort on the fault-containing modules. Such concentration can reduce development costs and increase quality. Predicting fault-prone modules has been primarily addressed using software quality metrics. For example, the work of Gyimothy, Ferenc, and Siket correlates structural object-oriented metrics with faults.[7] In contrast, this section considers recently proposed IR-based solutions to this problem. These include two clever black-box approaches and one more involved technique.

The first approach applies spam e-mail filter technology to the fault prediction problem.[8] Java source modules are treated as e-mail messages that are classified as spam when fault prone and ham when not. Several classification strategies from the CRM114 spam filtering software are used to predict faults. An experiment using the Java programs ArgoUML and eclipseBIRT showed that the approach can classify up to 75% of software modules correctly. In more detail, the precision ranged from 52% to 75%, recall from 70% to 98%, and accuracy from 56% to 80%. One advantage of the IR-based approach is that there is no need to parse the source code in detail (in contrast, extracting metrics can be expensive).

The second approach applies the QALP metric to fault prediction.[9] This metric first builds a corpus where each module is split into two artifacts: one includes the soft words extracted from the source, while the other includes the header and in-line comments. The comments are stemmed and stopped using a standard English stop list. The code is stopped using a programming language-specific stop list that includes, for example, programming language keywords. Next, the cosine similarity between source code and corresponding comments is computed for each function using tf-idf weighting, thus rating each on a scale from 0 to 1.

Linear mixed-effects regression is then used to build the fault-prediction models. These models predict the likelihood of a module being faulty. The results, while complex, show little correlation when applied to Mozilla. However, when applied to a proprietary program, statistically significant correlations exist. Of particular interest, the usefulness of the QALP metric in predicting faults increases as module size increases.

Finally, a variation on fault prediction is considered where bug-introducing changes are predicted.[10] This technique helps to prevent bugs before their introduction. The algorithm first extracts from a program’s version history all changes that introduce bugs. This text is then used to train several machine learning algorithms. The output can be used to predict the probability that a subsequent change will introduce a bug.

Using the Weka tool set, which provides a collection of machine learning algorithms (e.g., K-Nearest Neighbors),[11] models were built to predict if a future change is likely to introduce a bug. Tenfold cross-validation with the two small open-source systems JHotDraw and DNSJava supports the overall idea: precision ranged from 50% to 80% and recall from 10% to 58%.[10]

DEVELOPER IDENTIFICATION

Developer identification seeks to identify the right developer for a task. It is useful primarily to project managers, especially when the number of developers is large (as is often the case with open-source software). This section considers two different approaches to the problem.

The first approach applies two IR techniques. The first creates a topic model for a code using LDA.[12] From this model, developer similarity is calculated using Kullback–Leibler divergence[12] based on reconstructing the probability distributions over topics for each author.

In more detail, a topic model is a probability mass function (a probability function where all the individual probabilities sum to one) that provides the probability that each word in the vocabulary relates to a given topic. Topic models represent topical divisions in the source code. The
approach divides a program into k topics and thus k topic models. Matlab’s *LDA-based AT* algorithm is then used to transform input *worked on* matrices, which identify the source code each developer has worked on, into two output matrices: an *artifact-topic* matrix and an *author-topic* matrix. These matrices associate different topics with artifacts and authors, respectively. Linstead et al. observe that (informally) the models produce a good topical division of their subject program, *Eclipse 3.0*.

The second step calculates developer similarity by converting the author-topic matrix to a similarity matrix that captures the pairwise “distance” between authors. Several methods were considered (e.g., standard Euclidean measures and cosine similarity). The best results came from reconstructing the probability distributions over topics for each author using Kullback–Leibler divergence. For the second technique, the best candidate developer is assumed to be the one that has completed similar requests in the past.[13] The algorithm creates a corpus of “artifacts” for each candidate that includes past change requests assigned to the developer and notes included by the developer during Concurrent Versions System (CVS) commits. Change requests are then used to query the corpus using a probabilistic retrieval method with a complex term-weighting function. The probability that an artifact is relevant to query q, denoted $P(R|a, q)$, is defined as

$$P(R|a, q) = \sum_{t \text{ a term from } q} W(t)$$

where after folding in several tuning constants used by Canfora and Cerulo the weight, W, for term t is given by

$$W(t) = \frac{2.2F(t)}{0.3 + 0.9RAL + F(t)} \log \frac{N}{NA(t)}$$

where $F(t)$ is the frequency of term t in the artifact, RAL is the ratio of the artifact length to the average artifact length, N is the number of artifacts in the collection, and $NA(t)$ is the number of artifacts in which term t appears.

Unlike most searches, in this application there is really only one relevant “document”: the developer assigned to the change. Therefore, the evaluation of the tool’s selection is done in terms of the percentage of change requests where the developer was ranked in the top N. Reported below are the results for $N = 1$, which is the strictest threshold because as N increases the retrieval can be “successful” even if the best developer appears lower in the ranking.

The evaluation considered two different programs, *KDE* and *Mozilla*. In each case half of the change requests were used as a training set and the remaining half were used as the test set. The correct developer was ranked first in 12% and 5% of the requests for *KDE* and *Mozilla*, respectively. The system does better with very active developers because there is more text “describing” them. For example when restricted to the five most active developers, accuracy is 59% and 32%, respectively.

COMPREHENSION

Software comprehension tools assist engineers in understanding unfamiliar code. They are essential as economic pressure requires a maintenance engineer to quickly and effectively understand the subset of the code relevant to a maintenance request. Interest in the application of IR to comments and identifiers in support of program comprehension is largely due to the work of Maletic and Marcus.[14] Given this work is less than a decade old, techniques are just beginning to exploit natural language information; thus, IR (in particular natural language processing) has a bright future as a program comprehension aid.

This section highlights four comprehension techniques applicable during maintenance and evolution. IR also applies to comprehension tasks during initial software development. These uses are surveyed in a companion entry (see *Applications of Information Retrieval to Software Development* p.).

The first use of IR applies LDA “out of the box” to extract domain level business concepts (e.g., privacy), which often go undocumented (or poorly documented) making it hard to comprehend a system’s functionality.[15] What makes LDA appealing in this application is that it automatically produces three things: the topics, the words (hard words found in the source) that indicate topics, and the mixture topics found in each document. In this regard it generalizes techniques such as LSI as it supports multiple concepts within a document. In this application, the result is a set of topics and a distribution of these topics in each source file.

Empirical study finds the tool extracts a subset of the reasonable domain topics. Thus, LDA forms a satisfactory starting point for further manual refinement of topics. However, the authors note that “one disadvantage of LDA is that it does not derive any interrelationships between the extracted topics” This comment provides one direction for future work.

The second technique creates a meaningful summary of a software module from extracted natural language information.[16] The summaries are then used to select classes for reuse. The algorithm begins by separately processing comments and code. Comments are parsed using a natural language parser. This task is simplified because comments are written in a limited number of sentence structures: present tense, simple past tense, or simple future tense. Some comments require minor modification (e.g., prefixing them with the word *this*) to make them grammatically correct sentences. For the code, attribute and method names are extracted and then tagged with part-of-speech information before being combined with the parsed
comments to construct a concept graph. The text associated with the internal nodes of this graph provide high-level descriptions of each corresponding concept. The tool was tested on three Graphical User Interface (GUI) software packages where the resulting descriptions largely matched those of experts. The third technique uses statistical properties of language to extract key concepts that provide a concise word-based summary of a program.\[17\]

This technique requires a simplification of \(tf \) and \(idf \) for a hard word \(hw \) where

\[
\begin{align*}
 tf(hw) & = \begin{cases}
 1 & \text{if } \exists a, \ tf(hw, a) > 1 \\
 0 & \text{otherwise}
 \end{cases} \\
 idf(hw) & = \begin{cases}
 1 & \text{if } 1 \leq af(hw) \leq n \land \text{is_prefix}(hw) \\
 0 & \text{otherwise}
 \end{cases}
\end{align*}
\]

and \(tf(hw, a) \) is the term frequency of \(hw \) in artifact \(a \), \(af(hw) \) is the artifact frequency (the number of artifacts in which \(hw \) occurs), and \(\text{is_prefix}(hw) \) is true iff \(hw \) is a prefix of all the identifiers in which it occurs.

A hard word is selected as a key concept if it has a weight of one. This selection occurs iff its \(tf \) and \(idf \) scores are both non-zero. Thus, weights can be efficiently computed because once a hard word occurs in an artifact twice, its \(tf \) value is one and once it has been observed in two artifacts its \(idf \) is one.

To measure the effectiveness of the techniques, an educational operating system written by one of the authors was studied. This 5,000 LoC program includes 279 hard words manually classified into four categories: key concepts (61), grouping words (18), attributes and less important words (70), and generic verbs (130). The algorithm finds 26% of the key concepts with an accuracy of 57%. For comparison, traditional \(tf-idf \) finds 13% of the key concepts with an accuracy of 28%; however, the traditional approach requires tuning the minimum threshold value—this value is not reported. As the technique is highly dependent on this threshold, a better comparison would present a range of threshold values.

The final technique uses LSI to create semantic clusters, which provide a developer with a first impression of an unfamiliar system.\[18\] Based on the hard words found in the identifiers and comments, LSI is used to determine the similarity between modules for the purposes of clustering. Term weights are computed using \(tf-idf \); however, in the case of object-oriented code, inherited methods are added to the vocabulary of the modules at a reduced strength (i.e., a weighting factor of 0.5 for each level of inheritance).

Modules are clustered in LSI space using average-link hierarchical agglomerative clustering (HAC), which builds a dendrogram of the module clusters. Initially, each module is considered to be a singleton cluster. At each step, the two closest clusters are merged where distance is calculated as the average cosine similarity of all pairs of modules in each of the clusters. The dendrogram is complete when all modules are merged into a single cluster. A threshold is applied to the dendrogram to determine the actual clusters that are created for a given project.

Each cluster is labeled with the top seven words calculated using the LSI space to exclude common words in the project in favor of words that distinguish the cluster from other clusters. Terms are ranked using the following formula:

\[
rel(t_0, C_0) = \frac{\sum_{C \in C} \text{sim}(t_0, C)}{|C|}
\]

where \(t_0 \) will have a high value in cluster \(C_0 \) if the similarity is high for cluster \(C_0 \) and low for all the other clusters of \(C \).

Finally, a Distribution Map is produced that colors each module based on the cluster it belongs to. The modules are then grouped by packages for Java applications to provide a visualization of the linguistic topics in each package. It should be noted that linguistic topics are not analogous to domain semantics. Instead, they relate to application concepts and architectural components, as is demonstrated in a case study using J\texttt{Ed}i\texttt{t}. In addition, the terms selected as descriptions for the topics are highly dependent on the quality of identifiers since they are the source of the terms. Therefore, labels will be more informative to an engineer when good naming practices are followed.

IMPACT ANALYSIS

Impact analysis estimates the effort required to change a software system\[19\]; this task plays an important role in the software maintenance process because with knowledge of the effort required to make a change, management can deploy resources better. In addition, automating the identification of impacted modules simplifies the comprehension task for a maintainer. Non-IR approaches to impact analysis include the dependence-based approach of Kamkar which uses static and dynamic slicing to identify affected modules.\[20\] This section considers four IR-based techniques. The first three apply IR techniques “off the shelf” while the fourth is more involved.

The first approach begins by identifying the set of external artifacts that describe components directly or indirectly impacted by a change request.\[21\] From these the related source-code modules can be identified (using, for e.g., the linking techniques described in the section “Traceability Links”). In a case study, the approach was investigated using the user’s manual of LEDA (Library of Efficient Data type and Algorithms) as the external documentation. Queries consisted of descriptions of maintenance tasks. Two retrieval methods were compared: VSM using cosine similarity to rank artifacts and a language model approach with a smoothed distribution of word frequencies. In the language
modeling approach, artifact scores were computed as the probability that a word from the maintenance request would appear in the artifact. In the case study, recall peaked at 96% (where only artifacts with a score that exceeded 50% of the best possible score were retrieved), and precision was 40%.

The second technique uses Bugzilla, CVS, and previously implemented change requests to gather text related to a new change request[19] Although Bugzilla and CVS are not formally indexed, common practice is to include the bug id in each commit comment. Therefore, it is straightforward to link change requests to source files. The underlying hypothesis behind this technique is that a new request will modify the same files as other similar requests. The retrieval method uses the probability of relevance as defined in Eq. 1 from the section “Developer Identification”. Here the artifacts representing a module include all the change requests that have affected the module. Each change request includes commit comments, a short description, and a long description. Queries comprise a short description and an optional long description.

The implementation, as an Eclipse plug-in named jimpa, was evaluated on four different software projects: Kcalc, Kpdf, Kspread, and Firefox. In general, better retrieval in terms of recall and precision occurs with more text describing prior requests. For example, with Kcalc, when the ranked list was truncated at the first relevant artifact, precision was 78%. After 30 artifacts, recall was 98%. The third technique uses finer granularity to describe change requests.[22] Rather than considering all change requests for a module, each module is divided into sections using diff. An artifact is then created from the union of the change requests that impacted a particular section. Therefore, a module can be described by several artifacts. This variation requires modifying the scoring function of the probabilistic retrieval method to return the maximum score over all the individual artifacts related to the particular source file.

In a study involving Gedit, Firefox, and ArgoUML, this finer level of granularity led to a 10–20% increase in precision for the first artifact in the ranked list. However, it produced a dip in recall (at 100 artifacts) because a query that previously strongly matched an entire module by partially matching several of its sections only weakly matched the individual sections. In the extreme, this condition occurs when words of a query can be partitioned into those occurring in different sections; thus, the aggregate scores well, but not any of the individual sections. This dip is benign in cases where an engineer prefers the more selective retrieval.

The goal of the final impact analysis project is to refine diff’s output by classifying lines as deleted, added, or changed.[23] A line is considered changed when only a “small” amount of the line is actually different. The approach first applies diff to identify ranges of differing code. Diff reports all differences as a deletion followed by an insertion. Classifying some pairs as changed is done in two steps. First, cosine similarity is applied to identify similar pairs. Pairs whose Levenshtein edit distance falls below a specified threshold are considered changes. The order of these last two steps allows the comparatively inexpensive cosine similarity calculation to preselect candidates for the considerably more expensive edit distance calculation.

The technique was tested using 100 randomly selected samples from the open-source project ArgoUML. Here, precision was defined to be the percentage of lines that the algorithm marked as changed where the oracle (an engineer) agreed, and recall was defined as the percentage of the lines that the oracle identified as changed where the algorithm agreed. It correctly identified changed lines with a precision of 96% and a recall of 95%.

TRACEABILITY LINKS

Traceability links tie together software artifacts from stakeholders’ initial requests to requirements specifications, design artifacts, models, reports, code, and test cases.[24] Maintaining these links is an arduous task. However, inadequate links is one of the main factors contributing to project cost overruns and failures; thus, there is a need for tool support to establish or re-establish traceability links.

Given that link maintenance is a costly manual process, several IR-based automatic and semiautomatic techniques have been proposed. Like comprehension, IR finds application to this problem during initial software development as well as during maintenance and evolution. The initial software development applications are surveyed in a companion entry (see Applications of Information Retrieval to Software Development). This section outlines three techniques that apply to software maintenance and evolution when traceability matrices were either not built or not kept up to date. It then considers a framework proposed to facilitate comparison and evaluation of traceability studies. The main focus of the work to date has been on how to report candidate links to a user with maximum recall without sacrificing precision. LSI is the most popular retrieval technique used, although several other methods including VSM and probabilistic IR have been experimented with. No method has yet proved a clear favorite.

The first technique uses Language Models (LM) where an artifact is retrieved for a query if there is a high probability that the artifact’s model would generate the query.[25] In the context of traceability, a unique LM is built for each section of the documentation. Then the source code and the documentation are fed into the Bayesian classifier that establishes the probability that a particular manual section would generate the words found in the source. Each module is linked to the manual section that has the highest probability of generating it. An implementation builds LMs by counting the number of occurrences of a particular event. In particular, bigram LMs are built where the occurrence of a word in the model is
conditioned based on the prior word: let \(C(s) \) be the number of times the sequence of words \(s \) occurs. The probability \(P(w_j|w_i) \) that \(w_j \) occurs given \(w_i \) precedes it in the text is \(C(w_j|w_i) / C(w_i) \).

An implementation was tested on the C++ program LEDA. However, only 110 of LEDA’s 208 classes are described in its 78 manual sections. For example, abstract superclasses, which are not described by the manual, get linked to a section describing a subclass. Thus, when associating all classes with the most similar section, precision is low (38.94%). However, recall is quite high (82.65%). The second technique is LSI based.\(^{26}\) It treats manual sections as queries to produce a ranked list of source files based on cosine similarity. In comparison with the LM-based approach, LSI produced better precision and similar recall for LEDA. In particular, returning just the top two ranked pairs for each section produced 53.98% precision and 83.33% recall. The LSI implementation was also applied to a second program, Albergate, a student-built Java system whose documentation shares considerably less vocabulary with the source code. Again using the top two ranked pairs, the results showed the expected drop in precision (28.45%) and recall (57.89%).

The third technique performs incremental traceability recovery using relevance feedback (a technique that attempts to move a query vector away from non-relevant answers and toward relevant answers).\(^{27}\) For example, one relevance feedback method employed is the Rocchio Algorithm, which reweights the original vector by increasing the weight of words found in correct links and decreases the weight of words found in false positives.

This modification is achieved by updating the weight \(w \) for each term \(t \) in the vector based on three tuning constants \(\alpha, \beta, \) and \(\gamma \) where

\[
w_{new}(t) = \alpha \cdot w(t) + \beta \cdot \frac{|CL_t|}{|F|} - \gamma \cdot |FP_t|
\]

where \(|CL_t| \) is the average weight of the terms correctly linked to \(t \) and \(|FP_t| \) is the average weight of the terms linked to \(t \) that are false positives. The three constants are used to emphasize positive or negative feedback as well as the importance of the original weight. Empirically, good results were achieved with \(\alpha = 1, \beta = 0.75, \) and \(\gamma = 0.25 \) (of particular importance was positive feedback being given three times the importance of negative feedback).

Two systems were used to evaluate the approach: EasyClinic and the NASA Imaging Spectrometer MODIS software. For EasyClinic, relevance feedback improved performance using LSI by about 1% on one subset of the data but degraded performance by about 5% on another. The authors speculate that the relevance feedback has the greatest impact when the artifact used as a query is short.

For MODIS, relevance feedback was applied to both a VSM and an LSI model. It improved precision by 0.5% for VSM and about 2% for LSI (both at 100% recall). In addition, the experiments with MODIS call into question the superiority of LSI for retrieving candidate links, as the precision values fluctuate back and forth at different levels of recall.

Finally, Hayes, Dekhtyar, and Osborne describe a four-phase framework for comparing traceability techniques.\(^{28}\) The phases are definition, planning, realization, and interpretation. Each phase is broken down into multiple parts. The planning phase, for example, is broken down into three parts: experimental design, measurement, and product. Each part provides specific information. Measurement, for example, defines the metrics used, their validation, objectivity, and scale. The other phases are similarly broken down into multiple parts. By casting studies into this rigid framework, all studies use a similar vocabulary and structure, which facilitates comparison. The paper compares four IR-based traceability recovery techniques (including the second and third considered above). The authors conclude by noting the need for larger standardized data sets (with answer sets) and the study of human factors associated with the tracing process.

REFACTORING

Refactoring attempts to improve software’s internal structure, maintainability, and comprehensibility. With object-oriented code, this task is often accomplished by splitting and merging classes and migrating partial functionality from one class to another. A consequence of refactoring is that it may be difficult to trace the lifetime of a feature across different versions. This shortcoming has a negative impact on maintainability.\(^{29}\)

Refactoring is necessary when a program’s internal structure degrades, often as a result of prior maintenance and evolution. Although IR has not yet been applied to the task of refactoring itself, it has been used to compensate for the lack of configuration management and the loss of traceability between related classes. This section describes an approach that automatically identifies and documents evolutionary discontinuities.

First, Antoniol, Di Penta, and Merlo trace features of a class from version to version.\(^{29}\) Their goal is to find classes that have been split, merged, or replaced. To accomplish this goal, classes are represented in a VSM using \(tf-idf \). Cosine similarity finds initial connections between classes across different versions. Class \(B \) is assumed to be a replacement for Class \(A \) if

1. \(A \) and \(B \) have different names.
2. \(A \) and \(B \) have a high cosine similarity.
3. \(A \) and \(B \) belong to different and subsequent releases \(n \) and \(n + 1 \) where Class \(B \) is not present in release \(n \) and Class \(A \) is not present in release \(n + 1 \).

A threshold is used to determine replacement. It is calibrated to system size taking into account the expected impact of
false positives. In a large system the threshold needs to be high (0.8–0.9), but in a smaller system there will be fewer false positives so a lower threshold (0.6–0.7) can be tolerated in an attempt to improve recall.

A case study using the Java Domain Name Server (dnsjava) found that the same class was involved in several different types of refactoring in the same release. Although there were false positives reported, the high cosine similarity scores were generally helpful in determining the developer’s past actions.

SUMMARY

This entry illustrates the variety of ways in which IR techniques have been used to address problems that software engineers face during software maintenance and evolution. These techniques are only a beginning. However, the initial success that IR has found in SE is a testament to the wealth of information stored in the natural language of a program and its supporting artifacts.

Looking forward, continued exploitation of this information should increase the value that IR brings to software engineers. Moreover, IR researchers continue to develop new retrieval methods. For example, LDA, a recent replacement for LSI, allows artifacts to be generated from a mixture of topic models rather than a single topic.\(^{30}\) SE researchers need to continually look for opportunities to exploit such new ideas and developments in solving current and future software engineering problems.

ACKNOWLEDGMENTS

Special thanks to Andrian Marcus for his comments, suggestions, and discussions, and to the reviewers for their thoughtful and detailed comments. Our appreciation to the following for responding to the request for current work and ideas for future research: Gerardo Canfora, Maurice Carey, Luigi Cerulo, Andrea De Lucia, Prem Devanbu, Letha Etzkorn, Bill Frakes, Gerald Gannod, Emily Gibson, Jane Hayes, Rocco Oliveto, Denys Poshyvanyk, Neil Rowe, and David Shepherd. The expertise of Craig Allen was invaluable in preparing this survey. Our appreciation to the following for responding to the request for current and future software engineering problems.

REFERENCES

2. Poshyvanyk D.; Marcus, A. Combining formal concept analysis with information retrieval for concept location in source code. In 15th International Conference on Program Comprehension, Banff, AB, Canada, June 2007.

